...
首页> 外文期刊>Langmuir: The ACS Journal of Surfaces and Colloids >Mechanism for helical gel formation from evaporation of colloidal solutions
【24h】

Mechanism for helical gel formation from evaporation of colloidal solutions

机译:胶体溶液蒸发形成螺旋凝胶的机理

获取原文
获取原文并翻译 | 示例

摘要

We use MRI imaging to decipher the physical mechanism behind helical gel formation when a colloidal solution is evaporated from a small vertical or inclined capillary. A gel column, surrounded by the solvent, is observed to appear in the middle of a capillary. For nearly vertical capillaries, the denser gel column buckles under gravity to form a loose spiral. Further heating leads to the formation of a helical vapor pocket, surrounded by asymmetric liquid menisci. As the heating continues, this vapor pocket propagates downward and traces the buckled column. If gravity buckling occurs and if the maximum thickness of the annular solvent film is less than the solvent capillary length, significant nonuniform vapor pressure builds up within the vapor bubble because the vapor's escape is obstructed and because the evaporation is nonuniform. This upward air pressure spiral is amplified by asymmetric menisci of the vapor pocket to produce a high liquid pressure gradient along the liquid spiral next to the helical vapor pocket. Both pressures are inversely proportional to the internal capillary diameter d, and together, they twist the buckled column to a much higher pitch. The balance of this force to the elastic force of the buckled column, which opposes coiling, leads to a minimum distance between pitches L that scales as d. When all the fluid outside the column has evaporated, the slow vapor release by the drying gel cannot provide sufficient pressure for coiling. Hence, the "compressed spring" starts to rewind and lengthen. The dominant force balance with the opposing dry friction force leads to a lower final pitch with an L similar to d(2) scaling. Both these scalings are consistent with our experimental data. [References: 6]
机译:当胶体溶液从小的垂直或倾斜毛细管中蒸发时,我们使用MRI成像来解释螺旋状凝胶形成背后的物理机制。观察到被溶剂包围的凝胶柱出现在毛细管的中间。对于近乎垂直的毛细管,较稠密的凝胶柱在重力作用下弯曲,形成松散的螺旋。进一步加热导致形成螺旋形蒸气囊,被不对称的液体弯月面包围。随着加热的继续,该气穴向下传播并追踪弯曲的色谱柱。如果发生重力弯曲,并且环形溶剂膜的最大厚度小于溶剂毛细管长度,则会在蒸汽泡内积聚明显的不均匀蒸汽压,因为会阻碍蒸汽逸出并且蒸发会不均匀。该向上的气压螺旋被蒸气囊的不对称弯月面放大,从而沿着紧邻螺旋蒸气囊的液体螺旋产生高的液体压力梯度。两种压力都与内部毛细管直径d成反比,并且一起使扭曲柱弯曲到更高的螺距。该力与曲折柱的弹性力之间的平衡(与绕制相反)导致间距L之间的最小距离按d缩放。当色谱柱外部的所有流体均已蒸发时,干燥凝胶释放的缓慢蒸汽无法提供足够的卷取压力。因此,“压缩弹簧”开始倒带并伸长。具有相反的干摩擦力的主力平衡会导致较低的最终螺距,其L类似于d(2)标度。这两个比例均与我们的实验数据一致。 [参考:6]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号