...
首页> 外文期刊>Lab on a chip >In search of the skeletal stem cell: isolation and separation strategies at the macro/micro scale for skeletal regeneration
【24h】

In search of the skeletal stem cell: isolation and separation strategies at the macro/micro scale for skeletal regeneration

机译:寻找骨骼干细胞:宏观/微观尺度的骨骼再生分离和分离策略

获取原文
获取原文并翻译 | 示例

摘要

Skeletal stem cells (SSCs) show great capacity for bone and cartilage repair however, current in vitro cultures are heterogeneous displaying a hierarchy of differentiation potential. SSCs represent the diminutive true multipotent stem cell fraction of bone marrow mononuclear cell (BMMNC) populations. Endeavours to isolate SSCs have generated a multitude of separation methodologies. SSCs were first identified and isolated by their ability to adhere to culture plastic. Once isolated, further separation is achieved via culture in selective or conditioned media (CM). Indeed, preferential SSC growth has been demonstrated through selective in vitro culture conditions. Other approaches have utilised cell morphology (size and shape) as selection criteria. Studies have also targeted SSCs based on their preferential adhesion to specified compounds, individually or in combination, on both macro and microscale platforms. Nevertheless, most of these methods which represent macroscale function with relatively high throughput, yield insufficient purity. Consequently, research has sought to downsize isolation methodologies to the microscale for single cell analysis. The central approach is identification of the requisite cell populations of SSC-specific surface markers that can be targeted for isolation by either positive or negative selection. SELEX and phage display technology provide apt means to sift through substantial numbers of candidate markers. In contrast, single cell analysis is the paramount advantage of microfluidics, a relatively new field for cell biology. Here cells can be separated under continuous or discontinuous flow according to intrinsic phenotypic and physicochemical properties. The combination of macroscale quantity with microscale specificity to generate robust high-throughput (HT) technology for pure SSC sorting, isolation and enrichment offers significant implications therein for skeletal regenerative strategies as a consequence of lab on chip derived methodology.
机译:骨骼干细胞(SSC)显示出强大的骨骼和软骨修复能力,但是,当前的体外培养物是异质的,显示出分化潜能的层次。 SSC代表了骨髓单核细胞(BMMNC)人群的真正的多能干细胞小部分。分离SSC的努力已经产生了许多分离方法。 SSC首先通过粘附塑料的能力进行鉴定和分离。分离后,可通过在选择性或条件培养基(CM)中进行培养来实现进一步分离。实际上,已经通过选择性的体外培养条件证明了SSC的优先生长。其他方法已利用细胞形态(大小和形状)作为选择标准。研究还针对SSC,基于它们在宏观和微观平台上对特定化合物的优先粘附性,无论是单独还是组合使用。然而,大多数这些代表宏观功能并具有相对较高通量的方法,其纯度不足。因此,研究试图将分离方法的尺寸缩小到用于单细胞分析的微观规模。中心方法是鉴定SSC特异性表面标记的必需细胞群,这些标记物可以通过阳性或阴性选择作为分离目标。 SELEX和噬菌体展示技术提供了筛选大量候选标记的合适方法。相比之下,单细胞分析是微流体技术的最重要优势,微流体技术是细胞生物学的一个相对较新的领域。根据固有的表型和理化特性,可以在连续或不连续流动下分离细胞。宏观上的数量与微观上的特异性相结合,以产生用于纯SSC分选,分离和富集的强大的高通量(HT)技术,这对芯片的再生策略具有重要意义,这是芯片实验室方法的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号