...
首页> 外文期刊>Lab on a chip >Mechanical disruption of mammalian cells in a microfluidic system and its numerical analysis based on computational fluid dynamics
【24h】

Mechanical disruption of mammalian cells in a microfluidic system and its numerical analysis based on computational fluid dynamics

机译:基于微流体系统的哺乳动物细胞的机械破坏及其数值分析

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The lysis of mammalian cells is an essential part of different lab-on-a-chip sample preparation methods, which aim at the release, separation, and subsequent analysis of DNA, proteins, or metabolites. Particularly for the analysis of compartmented in vivo metabolism of mammalian cells, such a method must be very fast compared to the metabolic turnover-rates, it should not affect the native metabolite concentrations, and should ideally leave cell organelles undamaged. So far, no such a method is available. We have developed a microfluidic system for the effective rapid mechanical cell disruption and established a mathematical model to describe the efficiency of the system. Chinese hamster ovary (CHO) cells were disrupted with high efficiency by passing through two consecutive micronozzle arrays. Simultaneous cell compression and shearing led to a disruption rate of ≥90% at a sample flow rate of Q = 120 μL min~(-1) per nozzle passage, which corresponds to a mean fluid velocity of 13.3 m s~(-1) and a mean Reynolds number of 22.6 in the nozzle gap. We discussed the problem of channel clogging by cellular debris and the resulting flow instability at the micronozzle arrays. The experimental results were compared to predictions from Computational Fluid Dynamics (CFD) simulations and the critical energy dissipation rate for the disruption of the CHO cell population with known size distribution was determined to be 4.7 x 10~8 W m~(-3) Our model for the calculation of cell disruption on the basis of CFD-data could be applied to other microgeometries to predict intended disruption or undesired cell damage.
机译:裂解哺乳动物细胞是不同的芯片实验室样品制备方法的重要组成部分,该方法旨在释放,分离和随后分析DNA,蛋白质或代谢产物。特别是对于分析哺乳动物细胞的体内隔室代谢,与代谢周转率相比,这种方法必须非常快,它不应该影响天然代谢产物的浓度,并且理想情况下应该不会损坏细胞器。到目前为止,还没有这样的方法。我们已经开发出一种有效的快速机械细胞破坏微流控系统,并建立了描述该系统效率的数学模型。中国仓鼠卵巢(CHO)细胞通过两个连续的微喷嘴阵列被高效破坏。在每个喷嘴通道Q = 120μLmin〜(-1)的样品流速下,同时进行的细胞压缩和剪切导致破坏率≥90%,这对应于13.3 ms〜(-1)的平均流体速度和喷嘴间隙中的平均雷诺数为22.6。我们讨论了细胞碎片堵塞通道的问题以及在微喷嘴阵列处产生的流量不稳定性。将实验结果与计算流体动力学(CFD)模拟的预测结果进行比较,确定已知大小分布的CHO细胞群体破坏的临界能量耗散率为4.7 x 10〜8 W m〜(-3)。基于CFD数据计算细胞破坏的模型可以应用于其他微几何结构,以预测预期的破坏或不希望的细胞损伤。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号