首页> 外文期刊>IEEE Transactions on Magnetics >A Robust Multimodal Optimization Algorithm Based on a Sub-Division Surrogate Model and an Improved Sampling Method
【24h】

A Robust Multimodal Optimization Algorithm Based on a Sub-Division Surrogate Model and an Improved Sampling Method

机译:一种基于细分代理模型的鲁棒多模态优化算法和改进的采样方法

获取原文
获取原文并翻译 | 示例

摘要

The characteristics analysis of an electric machine requires the finite-element method. Hence, a large amount of computation occurs in the design process to take into account uncertainties as the manufacturing tolerances. In this paper, an efficient and useful multimodal optimization algorithm using the kriging surrogate model is proposed for the robust optimization of an electric machine. However, the conventional kriging (CK) method has a memory problem in multi-dimensional problem due to the enlarged correlation matrix. Thus, a sub-domain kriging (SDK) strategy and improved Latin hypercube sampling (ILHS) are proposed not only to solve the memory problem of the CK method, but also to increase the convergence speed. In addition, a gradient-free sensitivity index is proposed for robust optimization in order to address the conventional first and second gradient index which causes a numerical error. The outstanding performance of the proposed algorithm is verified by comparing with other optimization methods via several mathematical test functions which includes multi-dimensional problem. Moreover, the proposed algorithm is applied to a cogging torque reduction design case for interior permanent magnet motor.
机译:电机的特性分析需要有限元方法。因此,在设计过程中会进行大量计算,以考虑制造公差的不确定性。该文提出一种高效实用的基于克里金代理模型的多模态优化算法,用于电机的鲁棒优化。然而,由于相关矩阵的扩大,传统的克里金法(CK)方法在多维问题中存在记忆问题。因此,提出了一种子域克里金法(SDK)策略和改进的拉丁超立方体采样(ILHS),不仅解决了CK方法的内存问题,而且提高了收敛速度。此外,为了解决导致数值误差的传统第一和第二梯度指数,提出了一种无梯度灵敏度指数进行鲁棒优化。通过包括多维问题在内的多个数学测试函数与其他优化方法的比较,验证了所提算法的优异性能。此外,该算法还应用于一种内部永磁电机齿槽转矩降低设计案例。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号