首页> 外文期刊>International Journal of Engineering and Technology >F-PNWAR: Fuzzy-based Positive and Negative Weighted Association Rule Mining Algorithm
【24h】

F-PNWAR: Fuzzy-based Positive and Negative Weighted Association Rule Mining Algorithm

机译:F-PNWAR:基于模糊的正负加权关联规则挖掘算法

获取原文
获取原文并翻译 | 示例

摘要

Association Rule Mining (ARM) algorithm motivates on mining of the Positive AssociationRules (PARs). In recent times, the researchers focused on mining the Negative Association Rules (NARs)by finding the interesting infrequent itemsets. Existing ARM algorithms discovers only the PARs andtreat each item with same significance. But, the significance of each item may differ from each other. Thispaper proposes a Fuzzy-based Positive and Negative Weighted Association Rule (F-PNWAR) miningalgorithm for the market-based data analysis. The itemsets are ranked and weight is assigned to theitemsets based on the rank. The positive and negative weighted itemsets are extracted and rule isgenerated. The proposed F-PNWAR algorithm is compared with the existing weighted ARM (WARM),Fuzzy WARM (FWARM), Enhanced FWARM (E-FWARM), traditional K-means and Adaptive Kmeansalgorithms. The comparative analysis shows that the proposed F-PNWAR algorithm achievesmaximum frequency item rate, association rule rate, accuracy and minimum execution time than theexisting algorithms.
机译:关联规则挖掘 (ARM) 算法激励正关联规则 (PAR) 的挖掘。最近,研究人员专注于通过寻找有趣的不常见项目集来挖掘负关联规则(NAR)。现有的 ARM 算法仅发现 PAR,并以相同的重要性对待每个项目。但是,每个项目的重要性可能彼此不同。该文提出一种基于模糊的正负加权关联规则(F-PNWAR)挖掘算法,用于基于市场的数据分析。对项集进行排名,并根据排名将权重分配给项集。提取正数和负数加权项集并生成规则。将所提出的F-PNWAR算法与现有的加权ARM(WARM)、模糊WARM(FWARM)、增强型FWARM(E-FWARM)、传统K均值和自适应K均值算法进行了比较。对比分析表明,与现有算法相比,所提F-PNWAR算法实现了最大频率项率、关联规则率、准确率和最小执行时间。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号