首页> 外文期刊>plos one >Association between out-patient visits and air pollution in Chiang Mai, Thailand: Lessons from a unique situation involving a large data set showing high seasonal levels of air pollution
【24h】

Association between out-patient visits and air pollution in Chiang Mai, Thailand: Lessons from a unique situation involving a large data set showing high seasonal levels of air pollution

机译:泰国清迈门诊就诊与空气污染之间的关联:从涉及显示高季节性空气污染水平的大型数据集的独特情况中吸取的教训

获取原文
获取原文并翻译 | 示例

摘要

Chiang Mai is one of the most known cities of Northern Thailand, representative for various cities in the East and South-East Asian region exhibiting seasonal smog crises. While a few studies have attempted to address smog crises effects on human health in that geographic region, research in this regard is still in its infancy. We exploited a unique situation based on two factors: large pollutant concentration variations due to the Chiang Mai smog crises and a relatively large sample of out-patient visits. About 216,000 out-patient visits in the area of Chiang Mai during the period of 2011 to 2014 for upper (J30-J39) and lower (J44) respiratory tract diseases were evaluated with respect to associations with particulate matter (PM10), ozone (O-3), and nitrogen dioxide (NO2) concentrations using single-pollutant and multiple-pollutants Poisson regression models. All three pollutants were found to be associated with visits due to upper respiratory tract diseases (with relative risks RR = 1.023 at cumulative lag 05, 95 CI: 1.021-1.025, per 10 mu g/m(3) PM10 increase, RR = 1.123 at lag 05, 95 CI: 1.118-1.129, per 10 ppb O-3 increase, and RR = 1.110 at lag 05, 95 CI: 1.102-1.119, per 10 ppb NO2 increase). Likewise, all three pollutants were found to be associated with visits due to lower respiratory tract diseases (with RR = 1.016 at lag 06, 95 CI: 1.015-1.017, per 10 mu g/m(3) PM10 increase, RR = 1.073 at lag 06, 95 CI: 1.070-1.076, per 10 ppb O-3 increase, and RR = 1.046 at lag 06, 95 CI: 1.040-1.051, per 10 ppb NO2 increase). Multi-pollutants modeling analysis identified O-3 as a relatively independent risk factor and PM10-NO2 pollutants models as promising two-pollutants models. Overall, these results demonstrate the adverse effects of all three air pollutants on respiratory morbidity and call for air pollution reduction and control.
机译:清迈是泰国北部最著名的城市之一,是东亚和东南亚地区表现出季节性雾霾危机的各个城市的代表。虽然一些研究试图解决雾霾危机对该地理区域人类健康的影响,但这方面的研究仍处于起步阶段。我们利用了基于两个因素的独特情况:清迈雾霾危机导致的污染物浓度变化很大,以及门诊就诊样本相对较大。2011 年至 2014 年期间,清迈地区约有 216,000 人次因上呼吸道疾病 (J30-J39) 和下呼吸道疾病 (J44) 门诊就诊,使用单污染物和多污染物泊松回归模型评估了与颗粒物 (PM10)、臭氧 (O-3) 和二氧化氮 (NO2) 浓度的关联。发现所有三种污染物都与上呼吸道疾病引起的就诊有关(相对风险RR = 1.023,累积滞后05,95%CI:1.021-1.025,每增加10 μ g/m(3),PM10增加,RR = 1.123,滞后05:95%CI:1.118-1.129,每增加10 ppb O-3,RR = 1.110,滞后05,95%CI: 1.102-1.119,每增加10 ppb NO2)。同样,发现所有三种污染物都与下呼吸道疾病引起的就诊有关(滞后 06 时 RR = 1.016,95% CI:1.015-1.017,每增加 10 μ g/m(3) PM10,RR = 1.073,滞后 06 时 RR = 1.073,95% CI:1.070-1.076,每增加 10 ppb O-3,RR = 1。滞后 06 时为 046,95% CI:1.040-1.051,每增加 10 ppb NO2)。多污染物模型分析将O-3确定为相对独立的危险因素,PM10-NO2污染物模型为有前途的双污染物模型。总体而言,这些结果表明了所有三种空气污染物对呼吸系统发病率的不利影响,并呼吁减少和控制空气污染。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号