首页> 外文期刊>npj digital medicine >Discovering a trans-omics biomarker signature that predisposes high risk diabetic patients to diabetic kidney disease
【24h】

Discovering a trans-omics biomarker signature that predisposes high risk diabetic patients to diabetic kidney disease

机译:发现一种使高危糖尿病患者易患糖尿病肾病的跨组学生物标志物特征

获取原文
获取原文并翻译 | 示例

摘要

Diabetic kidney disease is the leading cause of end-stage kidney disease worldwide; however, the integration of high-dimensional trans-omics data to predict this diabetic complication is rare. We develop artificial intelligence (AI)-assisted models using machine learning algorithms to identify a biomarker signature that predisposes high risk patients with diabetes mellitus (DM) to diabetic kidney disease based on clinical information, untargeted metabolomics, targeted lipidomics and genome-wide single nucleotide polymorphism (SNP) datasets. This involves 618 individuals who are split into training and testing cohorts of 557 and 61 subjects, respectively. Three models are developed. In model 1, the top 20 features selected by AI give an accuracy rate of 0.83 and an area under curve (AUC) of 0.89 when differentiating DM and non-DM individuals. In model 2, among DM patients, a biomarker signature of 10 AI-selected features gives an accuracy rate of 0.70 and an AUC of 0.76 when identifying subjects at high risk of renal impairment. In model 3, among non-DM patients, a biomarker signature of 25 AI-selected features gives an accuracy rate of 0.82 and an AUC of 0.76 when pinpointing subjects at high risk of chronic kidney disease. In addition, the performance of the three models is rigorously verified using an independent validation cohort. Intriguingly, analysis of the protein-protein interaction network of the genes containing the identified SNPs (RPTOR, CLPTM1L, ALDH1L1, LY6D, PCDH9, B3GNTL1, CDS1, ADCYAP and FAM53A) reveals that, at the molecular level, there seems to be interconnected factors that have an effect on the progression of renal impairment among DM patients. In conclusion, our findings reveal the potential of employing machine learning algorithms to augment traditional methods and our findings suggest what molecular mechanisms may underlie the complex interaction between DM and chronic kidney disease. Moreover, the development of our AI-assisted models will improve precision when diagnosing renal impairment in predisposed patients, both DM and non-DM. Finally, a large prospective cohort study is needed to validate the clinical utility and mechanistic implications of these biomarker signatures.
机译:糖尿病肾病是全球终末期肾病的主要原因;然而,整合高维跨组学数据来预测这种糖尿病并发症的情况很少见。我们开发了人工智能 (AI) 辅助模型,使用机器学习算法来识别生物标志物特征,该特征使糖尿病 (DM) 高危患者易患糖尿病肾病,基于临床信息、非靶向代谢组学、靶向脂质组学和全基因组单核苷酸多态性 (SNP) 数据集。这涉及 618 人,他们分别分为 557 名和 61 名受试者的训练和测试队列。开发了三种模型。在模型 1 中,AI 选择的前 20 个特征在区分 DM 和非 DM 个体时的准确率为 0.83,曲线下面积 (AUC) 为 0.89。在模型 2 中,在 DM 患者中,10 个 AI 选择特征的生物标志物特征在识别肾功能损害高风险受试者时准确率为 0.70,AUC 为 0.76。在模型 3 中,在非 DM 患者中,25 个 AI 选择特征的生物标志物特征在精确定位慢性肾病高风险受试者时准确率为 0.82,AUC 为 0.76。此外,使用独立的验证队列严格验证了这三个模型的性能。有趣的是,对含有已鉴定的 SNP(RPTOR、CLPTM1L、ALDH1L1、LY6D、PCDH9、B3GNTL1、CDS1、ADCYAP 和 FAM53A)的基因的蛋白质-蛋白质相互作用网络的分析表明,在分子水平上,似乎存在相互关联的因素对 DM 患者肾功能损害的进展产生影响。总之,我们的研究结果揭示了采用机器学习算法来增强传统方法的潜力,我们的研究结果表明了DM和慢性肾病之间复杂相互作用的分子机制。此外,我们的人工智能辅助模型的开发将提高诊断易感患者(包括糖尿病和非糖尿病患者)肾功能损害的精确度。最后,需要一项大型前瞻性队列研究来验证这些生物标志物特征的临床效用和机制意义。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号