首页> 外文期刊>communications physics >Maximally modular structure of growing hyperbolic networks
【24h】

Maximally modular structure of growing hyperbolic networks

机译:不断增长的双曲线网络的最大模块化结构

获取原文
获取原文并翻译 | 示例

摘要

Hyperbolic network models provide a particularly successful approach to explain many peculiar features of real complex networks including, for instance, the small-world and scale-free properties, or the relatively high clustering coefficient. Here we show that for the popularity-similarity optimisation (PSO) model from this family, the generated networks become also extremely modular in the thermodynamic limit, despite lacking any explicitly built-in community formation mechanism in the model definition. In particular, our analytical calculations indicate that the modularity in PSO networks can get arbitrarily close to its maximal value of 1 as the network size is increased. We also derive the convergence rate, which turns out to be dependent on the popularity fading parameter controlling the degree decay exponent of the generated networks. During the past decade, hyperbolic network models have received considerable attention due to their ability to capture many peculiar features of real complex networks, including for instance, the small-world and scale-free properties, or the high clustering coefficient. Here we show that for the popularity-similarity optimisation (PSO) model from this family, the generated networks do not only display the above properties but become also extremely modular in the thermodynamic limit, even though there is no explicitly built-in community formation mechanism in the model definition.
机译:双曲网络模型提供了一种特别成功的方法来解释真实复杂网络的许多特殊特征,例如,小世界和无标度属性,或相对较高的聚类系数。在这里,我们表明,对于该系列的流行相似性优化(PSO)模型,尽管模型定义中缺乏任何明确内置的社区形成机制,但生成的网络在热力学极限中也变得非常模块化。特别是,我们的分析计算表明,随着网络规模的增加,PSO网络中的模块化可以任意接近其最大值1。我们还推导出收敛率,结果证明它取决于控制生成网络的衰减程度指数的流行衰落参数。在过去的十年中,双曲网络模型因其能够捕获真实复杂网络的许多特殊特征而受到广泛关注,例如,包括小世界和无标度属性,或高聚类系数。在这里,我们表明,对于该系列的流行相似性优化(PSO)模型,生成的网络不仅表现出上述特性,而且在热力学极限上也变得非常模块化,即使模型定义中没有明确内置的社区形成机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号