首页> 外文期刊>Journal of Intelligent & Fuzzy Systems: Applications in Engineering and Technology >A robust tuned classifier-based distributed denial of service attacks detection for quality of service enhancement in software-defined network
【24h】

A robust tuned classifier-based distributed denial of service attacks detection for quality of service enhancement in software-defined network

机译:基于稳健的调整分类器分布式拒绝服务攻击检测,用于增强软件定义网络中的服务质量

获取原文
获取原文并翻译 | 示例

摘要

In today's world, Software-Defined Networking (SDN) plays a significant role in the advancement of next-generation network architecture that offers vast control to the network operators. However, the control layer is vulnerable to Distributed Denial of Service (DDoS) attacks where DDoS is one of the most powerful and devastating cyber-attacks. Thus, the development of a DDoS attack detection mechanism is very essential since these kinds of attacks have a direct impact on the overall performance of the SDN. In this paper, a new robust Tuned support vector machine-based DDoS attack detection methodology has been proposed to categorize the benign traffic from DDoS attack traffic on the SDN. Primarily, the network is created with controller and OpenFlow switch and the communication can be carried out through secure channels among different benign users and also attackers. Afterward, the multi-characteristic values are extracted by the effective extraction strategy which consists of the six-tuple characteristic values matrix. Finally, the tuned classifier has been implemented with the aid of optimization algorithm for differentiating the abnormal traffic and the normal traffic. The performance results manifest that the proposed detection framework achieves a higher accuracy of 98 and precision of 99 when compared with existing classifiers.
机译:在当今世界,软件定义网络 (SDN) 在下一代网络架构的发展中发挥着重要作用,为网络运营商提供了广泛的控制权。但是,控制层容易受到分布式拒绝服务 (DDoS) 攻击,其中 DDoS 是最强大和最具破坏性的网络攻击之一。因此,DDoS 攻击检测机制的开发非常重要,因为这些类型的攻击会直接影响 SDN 的整体性能。本文提出了一种新的基于DDoS攻击的鲁棒调优支持向量机DDoS攻击检测方法,用于对SDN上的DDoS攻击流量进行良性流量分类。首先,网络是使用控制器和OpenFlow交换机创建的,并且可以通过不同良性用户和攻击者之间的安全通道进行通信。然后,通过由六元组特征值矩阵组成的有效提取策略提取多特征值。最后,借助优化算法实现调优分类器,用于区分异常流量和正常流量。性能结果表明,与现有分类器相比,所提检测框架实现了98%的准确率和99%的准确率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号