首页> 外文期刊>Nucleic Acids Research >AP endonuclease deficiency results in extreme sensitivity to thymidine deprivation
【24h】

AP endonuclease deficiency results in extreme sensitivity to thymidine deprivation

机译:AP核酸内切酶缺乏症导致对胸苷剥夺的极端敏感性

获取原文
获取原文并翻译 | 示例
           

摘要

Thymidine depletion is toxic to virtually all actively growing cells. The fundamental mechanism responsible for thymidineless death remains unknown. One event thought to be critical in causing the toxicity of thymidine depletion is a sharp rise in the ratio of dUTP to dTTP and subsequent incorporation of dUTP into DNA. Maneuvers to alter dUTP levels appear to alter the toxicity of thymidine depletion. However, loss of uracil-DNA-N-glycosylase activity does not appear to change the toxicity of thymidine deprivation significantly. This study proposes to define the role of uracil base excision repair (BER) in mediating thymidineless death. The toxicity of thymidine deprivation induced by the antifolate aminopterin was measured in a series of mutant Saccharomyces cerevisiae strains deficient in various steps in uracil-BER. Most mutants displayed modest changes in their sensitivity to aminopterin, with the exception of cells lacking the abasic endonuclease Apn1. apn1 mutants displayed a profound sensitivity to aminopterin that was relieved in an apn1 ung1 double mutant. Wild-type and apn1 mutants displayed similar levels of DNA damage and S-phase arrest during aminopterin treatment. A significant portion of cell killing occurred after removal of aminopterin in both wild-type and apn1 mutant cells. apn1 mutants showed a complete inability to re-initiate DNA replication following removal of aminopterin. These findings suggest recovery from arrest is a crucial step in determining the response to thymidine deprivation and that interruptions in uracil-BER increase the toxicity of thymidine deprivation by blocking re-initiation of replication rather than inciting global DNA damage. Inhibition of apurinic/apyrimidinic endonuclease may therefore be a reasonable approach to increase the efficacy of anticancer chemotherapies based on thymidine depletion.
机译:胸苷的耗竭实际上对所有活跃生长的细胞都是有毒的。造成无胸腺嘧啶核苷死亡的基本机制仍是未知的。被认为对引起胸苷耗竭毒性至关重要的一个事件是dUTP与dTTP的比例急剧上升以及随后将dUTP掺入DNA中。改变dUTP水平的方法似乎改变了胸苷消耗的毒性。但是,尿嘧啶-DNA-N-糖基化酶活性的丧失似乎并未显着改变胸腺嘧啶核苷剥夺的毒性。这项研究建议定义尿嘧啶碱基切除修复(BER)在介导无胸腺嘧啶核苷死亡中的作用。在一系列在尿嘧啶-BER中各个步骤不足的突变酿酒酵母菌株中,测量了由抗叶酸氨基蝶呤引起的胸腺嘧啶核苷剥夺的毒性。除了缺少脱碱基核酸内切酶Apn1的细胞外,大多数突变体对氨蝶呤的敏感性均显示出适度的变化。 apn1突变体显示出对氨蝶呤的极高敏感性,而在apn1 ung1双突变体中缓解了。在氨基蝶呤治疗期间,野生型和apn1突变体显示出相似水平的DNA损伤和S期停滞。在野生型和apn1突变细胞中,去除氨基蝶呤后,细胞杀伤的大部分发生。 apn1突变体显示完全无法在去除氨基蝶呤后重新启动DNA复制。这些发现表明,从逮捕中恢复是确定对胸腺嘧啶核苷缺乏反应的关键步骤,而尿嘧啶-BER的中断通过阻止复制的重新启动而不是引起整体DNA损伤而增加了胸腺嘧啶核苷缺乏的毒性。因此,抑制嘌呤/嘧啶核糖核酸内切酶可能是增加基于胸苷消耗的抗癌化疗药物疗效的合理方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号