首页> 外文期刊>European Radiology Experimental >Deep learning-aided extraction of outer aortic surface from CT angiography scans of patients with Stanford type B aortic dissection
【24h】

Deep learning-aided extraction of outer aortic surface from CT angiography scans of patients with Stanford type B aortic dissection

机译:斯坦福 B 型主动脉夹层患者 CT 血管造影扫描中深度学习辅助提取主动脉外表面

获取原文
获取原文并翻译 | 示例

摘要

Background Guidelines recommend that aortic dimension measurements in aortic dissection should include the aortic wall. This study aimed to evaluate two-dimensional (2D)- and three-dimensional (3D)-based deep learning approaches for extraction of outer aortic surface in computed tomography angiography (CTA) scans of Stanford type B aortic dissection (TBAD) patients and assess the speed of different whole aorta (WA) segmentation approaches.Methods A total of 240 patients diagnosed with TBAD between January 2007 and December 2019 were retrospectively reviewed for this study; 206 CTA scans from 206 patients with acute, subacute, or chronic TBAD acquired with various scanners in multiple different hospital units were included. Ground truth (GT) WAs for 80 scans were segmented by a radiologist using an open-source software. The remaining 126 GT WAs were generated via semi-automatic segmentation process in which an ensemble of 3D convolutional neural networks (CNNs) aided the radiologist. Using 136 scans for training, 30 for validation, and 40 for testing, 2D and 3D CNNs were trained to automatically segment WA. Main evaluation metrics for outer surface extraction and segmentation accuracy were normalized surface Dice (NSD) and Dice coefficient score (DCS), respectively.Results 2D CNN outperformed 3D CNN in NSD score (0.92 versus 0.90, p = 0.009), and both CNNs had equal DCS (0.96 versus 0.96, p = 0.110). Manual and semi-automatic segmentation times of one CTA scan were approximately 1 and 0.5 h, respectively.Conclusions Both CNNs segmented WA with high DCS, but based on NSD, better accuracy may be required before clinical application. CNN-based semi-automatic segmentation methods can expedite the generation of GTs.Relevance statement Deep learning can speeds up the creation of ground truth segmentations. CNNs can extract the outer aortic surface in patients with type B aortic dissection.{Graphical Abstract}
机译:背景指南建议,主动脉夹层的主动脉尺寸测量应包括主动脉壁。本研究旨在评估基于二维 (2D) 和三维 (3D) 的深度学习方法,用于在斯坦福 B 型主动脉夹层 (TBAD) 患者的计算机断层扫描血管造影 (CTA) 扫描中提取外主动脉表面,并评估不同全主动脉 (WA) 分割方法的速度。方法 回顾性回顾性分析2007年1月至2019年12月诊断为TBAD的240例患者;纳入了 206 名急性、亚急性或慢性 TBAD 患者的 206 次 CTA 扫描,这些患者在多个不同的医院病房使用各种扫描仪获得。放射科医生使用开源软件对 80 次扫描的地面实况 (GT) WA 进行分割。其余 126 个 GT WA 是通过半自动分割过程生成的,其中 3D 卷积神经网络 (CNN) 的集合为放射科医生提供帮助。使用 136 次扫描进行训练,30 次扫描进行验证,40 次扫描进行测试,训练 2D 和 3D CNN 自动分割 WA。外表面提取和分割精度的主要评价指标分别为归一化表面骰子(NSD)和骰子系数评分(DCS)。结果 2D CNN在NSD评分方面优于3D CNN(0.92 vs 0.90,p = 0.009),且两个CNN的DCS相同(0.96 vs 0.96,p = 0.110)。一次 CTA 扫描的手动和半自动分割时间分别约为 1 小时和 0.5 小时。结论 两种CNN均对DCS较高的WA进行分割,但基于NSD,临床应用前可能需要更高的准确性。基于CNN的半自动分割方法可以加快GTs的生成。CNN 可以提取 B 型主动脉夹层患者的外主动脉表面。{图形摘要}

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号