首页> 外文期刊>journal of big data >IGRF-RFE: a hybrid feature selection method for MLP-based network intrusion detection on UNSW-NB15 dataset
【24h】

IGRF-RFE: a hybrid feature selection method for MLP-based network intrusion detection on UNSW-NB15 dataset

机译:IGRF-RFE:UNSW-NB15数据集上基于MLP的网络入侵检测的混合特征选择方法

获取原文
获取原文并翻译 | 示例

摘要

The effectiveness of machine learning models can be significantly averse to redundant and irrelevant features present in the large dataset which can cause drastic performance degradation. This paper proposes IGRF-RFE: a hybrid feature selection method tasked for multi-class network anomalies using a multilayer perceptron (MLP) network. IGRF-RFE exploits the qualities of both a filter method for its speed and a wrapper method for its relevance search. In the first phase of our approach, we use a combination of two filter methods, information gain (IG) and random forest (RF) respectively, to reduce the feature subset search space. By combining these two filter methods, the influence of less important features but with the high-frequency values selected by IG is more effectively managed by RF resulting in more relevant features to be included in the feature subset search space. In the second phase of our approach, we use a machine learning-based wrapper method that provides a recursive feature elimination (RFE) to further reduce feature dimensions while taking into account the relevance of similar features. Our experimental results obtained based on the UNSW-NB15 dataset confirmed that our proposed method can improve the accuracy of anomaly detection as it can select more relevant features while reducing the feature space. The results show that the feature is reduced from 42 to 23 while the multi-classification accuracy of MLP is improved from 82.25 to 84.24.
机译:机器学习模型的有效性可能会严重反感大型数据集中存在的冗余和不相关特征,这可能会导致性能急剧下降。本文提出了一种基于多层感知器(MLP)网络的混合特征选择方法,用于处理多类网络异常问题。IGRF-RFE利用了过滤方法的速度和包装方法的相关性搜索。在方法的第一阶段,我们分别使用信息增益(IG)和随机森林(RF)两种滤波方法的组合来减少特征子集搜索空间。通过结合这两种滤波方法,RF可以更有效地管理不太重要的特征,但具有IG选择的高频值的影响,从而将更多相关特征包含在特征子集搜索空间中。在方法的第二阶段,我们使用基于机器学习的包装器方法,该方法提供递归特征消除 (RFE) 以进一步减小特征维度,同时考虑类似特征的相关性。基于UNSW-NB15数据集的实验结果证实,所提方法可以在减小特征空间的同时选择更相关的特征,从而提高异常检测的准确性。结果表明:MLP的特征从42个减少到23个,多重分类准确率从82.25%提高到84.24%。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号