...
首页> 外文期刊>Nonlinear dynamics >A velocity transformation method for the nonlinear dynamic simulation of railroad vehicle systems
【24h】

A velocity transformation method for the nonlinear dynamic simulation of railroad vehicle systems

机译:铁路车辆系统非线性动力学仿真的速度转换方法

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The solution of the constrained multibody system equations of motion using the generalized coordinate partitioning method requires the identification of the dependent and independent coordinates. Using this approach, only the independent accelerations are integrated forward in time in order to determine the independent coordinates and velocities. Dependent coordinates are determined by solving the nonlinear constraint equations at the position level. If the constraint equations are highly nonlinear, numerical difficulties can be encountered or more Newton-Raphson iterations may be required in order to achieve convergence for the dependent variables. In this paper, a velocity transformation method is proposed for railroad vehicle systems in order to deal with the nonlinearity of the constraint equations when the vehicles negotiate curved tracks. In this formulation, two different sets of coordinates are simultaneously used. The first set is the absolute Cartesian coordinates which are widely used in general multibody system computer formulations. These coordinates lead to a simple form of the equations of motion which has a sparse matrix structure. The second set is the trajectory coordinates which are widely used in specialized railroad vehicle system formulations. The trajectory coordinates can be used to obtain simple formulations of the specified motion trajectory constraint equations in the case of railroad vehicle systems. While the equations of motion are formulated in terms of the absolute Cartesian coordinates, the trajectory accelerations are the ones which are integrated forward in time. The problems associated with the higher degree of differentiability required when the trajectory coordinates are used are discussed. Numerical examples are presented in order to examine the performance of the hybrid coordinate formulation proposed in this paper in the analysis of multibody railroad vehicle systems.
机译:使用广义坐标划分方法求解受约束的多体系统运动方程,需要确定从属坐标和独立坐标。使用这种方法,只有独立的加速度在时间上向前积分,以便确定独立的坐标和速度。通过在位置级别求解非线性约束方程式来确定从属坐标。如果约束方程是高度非线性的,则可能会遇到数值困难,或者可能需要更多的Newton-Raphson迭代才能实现因变量的收敛。针对铁路车辆通过弯道时约束方程的非线性问题,提出了一种铁路车辆系统的速度变换方法。在此公式中,同时使用了两组不同的坐标。第一组是绝对笛卡尔坐标,广泛用于一般的多体系统计算机公式中。这些坐标导致运动方程的简单形式具有稀疏的矩阵结构。第二组是轨迹坐标,在专门的铁路车辆系统公式中广泛使用。在铁路车辆系统的情况下,轨迹坐标可用于获得指定运动轨迹约束方程的简单公式。虽然运动方程是根据绝对笛卡尔坐标表示的,但是轨迹加速度是在时间上向前积分的。讨论了与使用轨迹坐标时所需的更高的可微性程度相关的问题。为了验证本文提出的混合坐标公式在多体铁路车辆系统分析中的性能,给出了数值示例。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号