首页> 外文期刊>Journal of the Brazilian Society of Mechanical Sciences and Engineering >Numerical investigation of thermal performance augmentation of nanofluid flow in microchannel heat sinks by using of novel nozzle structure: sinusoidal cavities and rectangular ribs
【24h】

Numerical investigation of thermal performance augmentation of nanofluid flow in microchannel heat sinks by using of novel nozzle structure: sinusoidal cavities and rectangular ribs

机译:利用新型喷嘴结构(正弦腔和矩形肋)增强微通道散热器中纳米流体流动的热性能数值研究

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we present a numerical simulation of a laminar, steady and Newtonian flow of f-graphene nanoplatelet/water nanofluid in a new microchannel design with factors for increasing heat transfer such as presence of ribs, curves to enable satisfactory fluid mixing and changing fluid course at the inlet and exit sections. The results of this study show that Nusselt number is dependent on nanoparticles concentration, inlet geometry and Reynolds number. As the nanofluid concentration increases from 0 to 0.1 and Reynolds number from 50 to 1000, the Nusselt number enhances nearly up to 3 for increase in fluid concentration and averagely from 15.45 to 54.1 and from 14.5 to 55.9 for geometry with and without rectangular rib, respectively. The presence of ribs in the middle section of microchannel and curves close to hot walls causes a complete mixing of the fluid in different zones. When the nanoparticles concentration is increased, the pressure drop and velocity gradient will become higher. An increased concentration of nanoparticles in contribution with higher Reynolds numbers only increases the fraction factor slightly. (The fraction factor increases nearly 37 and 35 for Re = 50 and 1000, respectively.) The highest uniform temperature distribution can be found in the first zones of fluid in the microchannel and by further movement of fluid toward exit section, because of decreasing difference between surface and fluid temperature, the growth of temperature boundary layer increases and results in non-uniformity in temperature distribution in microchannel and cooling fluid. With decrease in the concentration from 0 to 0.1, the average outlet temperature and FOM decrease nearby 0.62 and 6.15, respectively.
机译:在本文中,我们提出了一种新的微通道设计中f-石墨烯纳米片/水纳米流体的层流、稳态和牛顿流体的数值模拟,该数值模拟具有增加传热的因素,例如肋条的存在、实现令人满意的流体混合的曲线以及改变入口和出口部分的流体路线。本研究结果表明,Nusselt数取决于纳米颗粒浓度、入口几何形状和雷诺数。随着纳米流体浓度从 0% 增加到 0.1%,雷诺数从 50 增加到 1000,流体浓度增加的努塞尔数增加了近 3%,对于有和没有矩形肋的几何形状,平均分别从 15.45 增加到 54.1 和 14.5 到 55.9。在微通道的中间部分存在肋条和靠近热壁的曲线导致不同区域的流体完全混合。当纳米颗粒浓度增加时,压降和速度梯度会变高。随着雷诺数的增加,纳米颗粒的浓度增加只会略微增加分数因子。(Re = 50 和 1000 时,分数因子分别增加了近 37% 和 35%。在微通道中的第一流体区域和流体进一步向出口段移动时,温度分布最均匀,由于表面和流体温度之间的差异减小,温度边界层的生长增加,导致微通道和冷却流体的温度分布不均匀。随着浓度从0%降低到0.1%,平均出口温度和FOM分别降低0.62%和6.15。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号