...
首页> 外文期刊>Neuroscience: An International Journal under the Editorial Direction of IBRO >Kinematic and dynamic processes for the control of pointing movements in humans revealed by short-term exposure to microgravity.
【24h】

Kinematic and dynamic processes for the control of pointing movements in humans revealed by short-term exposure to microgravity.

机译:通过短期暴露于微重力而揭示的控制人体指向运动的运动学和动态过程。

获取原文
获取原文并翻译 | 示例

摘要

The generation of accurate motor commands requires implicit knowledge of both limb and environmental dynamics. The action of gravity on moving limb segments must be taken into account within the motor command, and may affect the limb trajectory chosen to accomplish a given motor task. Exactly how the CNS deals with these gravitoinertial forces remains an open question. Does the CNS measure gravitational forces directly, or are they accommodated in the motor plan by way of internal models of physical laws? In this study five male subjects participated. We measured kinematic and dynamic parameters of upward and downward arm movements executed at two different speeds, in both normal Earth gravity and in the weightless conditions of parabolic flight. Exposure to microgravity affected velocity profiles for both directions and speeds. The shape of velocity profiles (the ratio of maximum to mean velocity) and movement duration both showed transient perturbations initially in microgravity, but returned to normal gravity values with practice in 0xg. Differences in relative time to peak velocity between upward versus downward movements, persisted for all trial performed in weightlessness. These differences in kinematic profiles and in the torque profiles used to produce them, diminished, however, with practice in 0xg. These findings lead to the conclusion that the CNS explicitly represents gravitational and inertial forces in the internal models used to generate and execute arm movements. Furthermore, the results suggest that the CNS adapts motor plans to novel environments on different time scales; dynamics adapt first to reproduce standard kinematics, and then kinematics patterns are adapted to optimize dynamics.
机译:准确的运动命令的生成需要肢体和环境动力学的隐性知识。在运动命令中必须考虑重力对运动肢体的作用,并且可能会影响为完成给定运动任务而选择的肢体轨迹。中枢神经系统究竟如何处理这些引力仍然是一个悬而未决的问题。 CNS是直接测量重力还是通过内部物理定律模型将其容纳在电机计划中?在这项研究中,有五名男性受试者参加。我们测量了在正常地球重力和抛物线飞行失重条件下,以两种不同速度执行的上,下臂运动的运动学和动力学参数。暴露于微重力会影响方向和速度的速度分布。速度分布图的形状(最大速度与平均速度之比)和运动持续时间均在微重力作用下最初显示出短暂的扰动,但在0xg的情况下恢复为正常重力值。在失重状态下进行的所有试验中,向上运动与向下运动之间的峰值速度的相对时间差异仍然存在。运动学曲线和用于产生运动学​​曲线的扭矩曲线中的这些差异在0xg的实践中已减小。这些发现得出结论,CNS在用于生成和执行手臂运动的内部模型中明确表示重力和惯性力。此外,结果表明,CNS在不同的时间范围内将电动机计划适应新的环境。动力学首先适应以重现标准运动学,然后适应运动学模式以优化动力学。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号