首页> 外文期刊>translational psychiatry >Development and validation of a machine learning model using electronic health records to predict trauma- and stressor-related psychiatric disorders after hospitalization with sepsis
【24h】

Development and validation of a machine learning model using electronic health records to predict trauma- and stressor-related psychiatric disorders after hospitalization with sepsis

机译:开发和验证使用电子健康记录的机器学习模型,以预测脓毒症住院后与创伤和应激源相关的精神疾病

获取原文
获取原文并翻译 | 示例

摘要

A significant minority of individuals develop trauma- and stressor-related disorders (TSRD) after surviving sepsis, a life-threatening immune response to infections. Accurate prediction of risk for TSRD can facilitate targeted early intervention strategies, but many existing models rely on research measures that are impractical to incorporate to standard emergency department workflows. To increase the feasibility of implementation, we developed models that predict TSRD in the year after survival from sepsis using only electronic health records from the hospitalization (n = 217,122 hospitalizations from 2012-2015). The optimal model was evaluated in a temporally independent prospective test sample (n = 128,783 hospitalizations from 2016-2017), where patients in the highest-risk decile accounted for nearly one-third of TSRD cases. Our approach demonstrates that risk for TSRD after sepsis can be stratified without additional assessment burden on clinicians and patients, which increases the likelihood of model implementation in hospital settings.
机译:少数人在脓毒症中幸存下来后会出现创伤和应激源相关疾病 (TSRD),这是一种危及生命的感染免疫反应。准确预测 TSRD 风险可以促进有针对性的早期干预策略,但许多现有模型依赖于不切实际的研究措施,无法纳入标准急诊科工作流程。为了提高实施的可行性,我们开发了模型,仅使用住院的电子健康记录(2012-2015 年住院 n = 217,122 例)来预测脓毒症存活后一年的 TSRD。在时间独立的前瞻性测试样本(2016-2017 年 n = 128,783 例住院)中评估了最佳模型,其中风险最高的十分位数患者占 TSRD 病例的近三分之一。我们的方法表明,脓毒症后 TSRD 的风险可以分层,而不会给临床医生和患者带来额外的评估负担,这增加了在医院环境中实施模型的可能性。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号