首页> 外文期刊>NeuroImage >A full subtraction approach for finite element method based source analysis using constrained Delaunay tetrahedralisation.
【24h】

A full subtraction approach for finite element method based source analysis using constrained Delaunay tetrahedralisation.

机译:基于约束Delaunay四面体化的基于有限元方法的源分析的完全减法。

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

A mathematical dipole is widely used as a model for the primary current source in electroencephalography (EEG) source analysis. In the governing Poisson-type differential equation, the dipole leads to a singularity on the right-hand side, which has to be treated specifically. In this paper, we will present a full subtraction approach where the total potential is divided into a singularity and a correction potential. The singularity potential is due to a dipole in an infinite region of homogeneous conductivity. The correction potential is computed using the finite element (FE) method. Special care is taken in order to evaluate the right-hand side integral appropriately with the objective of achieving highest possible convergence order for linear basis functions. Our new approach allows the construction of transfer matrices for fast computation of the inverse problem for anisotropic volume conductors. A constrained Delaunay tetrahedralisation (CDT) approach is used for the generation of high-quality FE meshes. We validate the new approach in a four-layer sphere model with a highly conductive cerebrospinal fluid (CSF) and an anisotropic skull compartment. For radial and tangential sources with eccentricities up to 1 mm below the CSF compartment, we achieve a maximal relative error of 0.71% in a CDT-FE model with 360 k nodes which is not locally refined around the source singularity and therefore useful for arbitrary dipole locations. The combination of the full subtraction approach with the high quality CDT meshes leads to accuracies that, to the best of the author's knowledge, have not yet been presented before.
机译:数学偶极子被广泛用作脑电图(EEG)源分析中主要电流源的模型。在控制泊松型微分方程中,偶极子导致右侧的奇点,必须对其进行特殊处理。在本文中,我们将介绍一种完全相减的方法,其中总电势分为奇异电势和校正电势。奇异电位是由于在均匀电导率的无限区域中的偶极子引起的。使用有限元(FE)方法计算校正电位。为了达到线性基函数的最高收敛阶数的目的,要特别注意评估右侧积分。我们的新方法允许构造传递矩阵,以快速计算各向异性体积导体的反问题。约束Delaunay四面体化(CDT)方法用于生成高质量的有限元网格。我们在具有高传导性脑脊髓液(CSF)和各向异性颅骨隔室的四层球体模型中验证了该新方法。对于在CSF隔室以下偏心度高达1 mm的径向和切向源,我们在具有360 k节点的CDT-FE模型中实现了0.71%的最大相对误差,该误差未在源奇点周围进行局部修正,因此可用于任意偶极子位置。完全减法与高质量CDT网格的结合导致了准确性,据作者所知,以前从未介绍过。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号