...
首页> 外文期刊>Nature methods >Correlative light-electron microscopy (CLEM) combining live-cell imaging and immunolabeling of ultrathin cryosections
【24h】

Correlative light-electron microscopy (CLEM) combining live-cell imaging and immunolabeling of ultrathin cryosections

机译:相关光电子显微镜(CLEM)结合活细胞成像和超薄冰冻切片的免疫标记

获取原文
获取原文并翻译 | 示例

摘要

The visualization of fluorescent proteins in living cells is a powerful approach to study intracellular dynamics. a limitation of fluorescence imaging, however, is that it lacks fine structural information; a fluorescent spot could represent an entire organelle, an organellar subdomain or even aggregates of proteins or membranes. these limitations can be overcome by immuno-electron microscopy (immunoEM), which uniquely combines protein detection with ultrastructural detail. electron microscopy (EM), however, requires fixation of the cells, resulting in static images with only limited information on membrane dynamics. to bridge the gap between live-cell imaging and em, several laboratories have developed procedures for so-called correlative light-electron microscopy (CLEM). In CLEM, fluorescently tagged proteins are first imaged by light microscopy and then visualized via em by immunolabeling(1-3) or di-aminobenzidine photoconversion(4-7). none of the current CLEM approaches use the cryo-immunogold method, which is probably the most optimal method for immunoEM(8). here we introduce a CLEM approach that integrates imaging of fluorescent proteins in live cells with the cryo-immunogold technique (Fig. 1) by modifying our previously published CLEM approach on fixed cells(9) at several steps (Box 1). Briefly, gridded coverslips are coated with Formvar and gelatin, according to an optimized protocol (steps 1-11 and supplementary table 1 online). cells destined for CLEM are grown on these gridded coverslips (steps 12-17), which facilitates tracing back their location in the electron microscope. after live-cell imaging (steps 18-22), cells are detached from the coverslip (step 23, the process is efficient due to the Formvar and gelatin coating of the coverslip) and prepared for electron microscopy (steps 24-32). using this approach, we monitored the kinetics and localization at nanometer resolution of the lysosomal membrane protein lamp-1 in live cells (Fig. 2).
机译:活细胞中荧光蛋白的可视化是研究细胞内动力学的有效方法。然而,荧光成像的局限性在于缺乏精细的结构信息。荧光斑点可以代表整个细胞器,细胞器亚结构域,甚至代表蛋白质或膜的聚集体。这些限制可以通过免疫电子显微镜(immunoEM)克服,该技术将蛋白质检测与超微结构细节独特地结合在一起。但是,电子显微镜(EM)要求固定细胞,从而产生静态图像,而有关膜动力学的信息非常有限。为了弥合活细胞成像和em之间的差距,一些实验室已经开发了用于所谓相关光电子显微镜(CLEM)的程序。在CLEM中,荧光标记的蛋白首先通过光学显微镜成像,然后通过免疫标记(1-3)或二氨基联苯胺光转化(4-7)通过em进行可视化。当前的CLEM方法均未使用冷冻免疫金方法,这可能是免疫EM的最佳方法(8)。在这里,我们介绍了一种CLEM方法,该方法通过修改我们先前发布的固定细胞上的CLEM方法(9),通过几个步骤(框1)将活细胞中荧光蛋白的成像与冷冻免疫金技术相结合(图1)。简而言之,根据优化的方案(步骤1-11和在线补充表1),用Formvar和明胶涂覆网格化的盖玻片。在这些网格状的盖玻片上生长了用于CLEM的细胞(步骤12-17),这有助于在电子显微镜中追溯其位置。在活细胞成像后(步骤18-22),将细胞与盖玻片分离(步骤23,由于盖玻片的Formvar和明胶涂层,该过程是有效的),并准备进行电子显微镜检查(步骤24-32)。使用这种方法,我们在活细胞中监测了溶酶体膜蛋白lamp-1的纳米分辨率的动力学和定位(图2)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号