首页> 外文期刊>Nature nanotechnology >An autonomous photosynthetic device in which all charge carriers derive from surface plasmons
【24h】

An autonomous photosynthetic device in which all charge carriers derive from surface plasmons

机译:一种自主的光合作用装置,其中所有电荷载流子均来自表面等离子体激元

获取原文
获取原文并翻译 | 示例
       

摘要

Solar conversion to electricity or to fuels based on electron-hole pair production in semiconductors is a highly evolved scientific and commercial enterprise. Recently, it has been posited that charge carriers either directly transferred from the plasmonic structure to a neighbouring semiconductor (such as TiO_2) or to a photocatalyst, or induced by energy transfer in a neighbouring medium, could augment photoconversion processes, potentially leading to an entire new paradigm in harvesting photons for practical use. The strong dependence of the wavelength at which the local surface plasmon can be excited on the nanostructure makes it possible, in principle, to design plasmonic devices that can harvest photons over the entire solar spectrum and beyond. So far, however, most such systems show rather small photocatalytic activity in the visible as compared with the ultraviolet. Here, we report an efficient, autonomous solar water-splitting device based on a gold nanorod array in which essentially all charge carriers involved in the oxidation and reduction steps arise from the hot electrons resulting from the excitation of surface plasmons in the nanostructured gold. Each nanorod functions without external wiring, producing 5 × 10~(13) H_2 molecules per cm~2 per s under 1 sun illumination (AM 1.5 and 100 mW cm ~(-2)), with unprecedented long-term operational stability.
机译:基于半导体中电子-空穴对生产的太阳能到电能或燃料的转化是一个高度发展的科学和商业企业。最近,已经提出,从等离子结构直接转移到相邻的半导体(例如TiO_2)或光催化剂的载流子,或在相邻介质中的能量转移诱导的载流子,可能会增加光转化过程,从而有可能导致整个在实际应用中收集光子的新范例。原则上,可以在纳米结构上激发局部表面等离子体激元的波长的强烈依赖性使得设计能够在整个太阳光谱及整个太阳光谱范围内收集光子的等离子体激元装置成为可能。然而,到目前为止,与紫外线相比,大多数此类系统在可见光中显示出相当小的光催化活性。在这里,我们报告了一种基于金纳米棒阵列的高效,自主的太阳能水分解装置,其中,基本上所有参与氧化和还原步骤的电荷载流子均来自于纳米结构金中表面等离激元激发所产生的热电子。每个纳米棒无需外部布线即可工作,在1种阳光照射下(AM 1.5和100 mW cm〜(-2)),每cm〜2 / s产生5×10〜(13)H_2分子/ s,具有前所未有的长期运行稳定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号