...
首页> 外文期刊>Nanotechnology >Room temperature enhanced red emission from novel Eu~(3+) doped ZnO nanocrystals uniformly dispersed in nanofibers
【24h】

Room temperature enhanced red emission from novel Eu~(3+) doped ZnO nanocrystals uniformly dispersed in nanofibers

机译:室温下均匀掺杂在纳米纤维中的新型Eu〜(3+)掺杂ZnO纳米晶体增强红色发射

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Achieving red emission from ZnO-based materials has long been a goal for researchers in order to realize, for instance, full-color display panels and solid-state light-emitting devices. However, the current technique using Eu ~(3+) doped ZnO for red emission generation has a significant drawback in that the energy transfer from ZnO to Eu~(3+) is inefficient, resulting in a low intensity red emission. In this paper, we report an efficient energy transfer scheme for enhanced red emission from Eu~(3+) doped ZnO nanocrystals by fabricating polymer nanofibers embedded with Eu~(3+) doped ZnO nanocrystals to facilitate the energy transfer. In the fabrication, ZnO nanocrystals are uniformly dispersed in polymer nanofibers prepared by the high electrical field electrospinning technique. Enhanced red emission without defect radiation from the ZnO matrix is observed. Three physical mechanisms for this observation are provided and explained, namely a small ZnO crystal size, uniformity distribution of ZnO nanocrystals in polymers (PVA in this case), and strong bonding between ZnO and polymer through the-OH group bonding. These explanations are supported by high resolution transmission emission microscopy measurements, resonant Raman scattering characterizations, photoluminescence spectra and photoluminescence excitation spectra measurements. In addition, two models exploring the 'accumulation layer' and 'depletion layer' are developed to explain the reasons for the more efficient energy transfer in our ZnO nanocrystal system compared to that in the previous reports. This study provides an important approach to achieve enhanced energy transfer from nanocrystals to ions which could be widely adopted in rare earth ion doped materials. These discoveries also provide more insights into other energy transfer problems in, for example, dye-sensitized solar cells and quantum dot solar cells.
机译:从ZnO基材料获得红色发射一直是研究人员的目标,目的是实现例如全色显示面板和固态发光器件。然而,当前使用Eu〜(3+)掺杂的ZnO来产生红色发射的现有技术具有显着的缺点,即从ZnO到Eu〜(3+)的能量传递效率低下,导致低强度的红色发射。在本文中,我们报告了一种有效的能量转移方案,该方法通过制造嵌入有Eu〜(3+)掺杂的ZnO纳米晶体的聚合物纳米纤维来促进Eu〜(3+)掺杂的ZnO纳米晶体的红色发射,从而促进能量转移。在制造中,ZnO纳米晶体均匀地分散在通过高电场静电纺丝技术制备的聚合物纳米纤维中。观察到增强的红色发射而没有来自ZnO基质的缺陷辐射。提供并解释了用于该观察的三个物理机制,即小的ZnO晶体尺寸,聚合物中ZnO纳米晶体的均匀分布(在这种情况下为PVA)以及ZnO和聚合物之间通过-OH基团的牢固键合。这些解释得到了高分辨率透射发射显微镜测量,共振拉曼散射表征,光致发光光谱和光致发光激发光谱测量的支持。此外,开发了两个探索“累积层”和“耗尽层”的模型,以解释与以前的报告相比,我们的ZnO纳米晶体系统中更有效的能量传递的原因。这项研究提供了一种重要的方法,可以实现从纳米晶体到离子的增强能量转移,可以广泛应用于稀土离子掺杂材料中。这些发现还提供了对染料敏化太阳能电池和量子点太阳能电池中其他能量转移问题的更多见解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号