首页> 外文期刊>Nanotechnology >Closed-form approximation and numerical validation of the influence of van der Waals force on electrostatic cantilevers at nano-scale separations
【24h】

Closed-form approximation and numerical validation of the influence of van der Waals force on electrostatic cantilevers at nano-scale separations

机译:范德华力对纳米级分离中静电悬臂的影响的闭合形式近似和数值验证

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

In this paper the two-point boundary value problem (BVP) of the cantilever deflection at nano-scale separations subjected to van der Waals and electrostatic forces is investigated using analytical and numerical methods to obtain the instability point of the beam. In the analytical treatment of the BVP, the nonlinear differential equation of the model is transformed into the integral form by using the Green's function of the cantilever beam. Then, closed-form solutions are obtained by assuming an appropriate shape function for the beam deflection to evaluate the integrals. In the numerical method, the BVP is solved with the MATLAB BVP solver, which implements a collocation method for obtaining the solution of the BVP. The large deformation theory is applied in numerical simulations to study the effect of the finite kinematics on the pull-in parameters of cantilevers. The centerline of the beam under the effect of electrostatic and van der Waals forces at small deflections and at the point of instability is obtained numerically. In computing the centerline of the beam, the axial displacement due to the transverse deformation of the beam is taken into account, using the inextensibility condition. The pull-in parameters of the beam are computed analytically and numerically under the effects of electrostatic and/or van der Waals forces. The detachment length and the minimum initial gap of freestanding cantilevers, which are the basic design parameters, are determined. The results of the analytical study are compared with the numerical solutions of the BVP. The proposed methods are validated by the results published in the literature.
机译:本文利用解析和数值方法研究了纳米级分离在范德华力和静电力作用下的悬臂挠度的两点边值问题(BVP),以得到梁的失稳点。在BVP的解析处理中,利用悬臂梁的格林函数将模型的非线性微分方程转换为积分形式。然后,通过假设适当的形状函数来估计梁的挠度,从而获得闭合形式的解。在数值方法中,使用MATLAB BVP求解器求解BVP,该求解器实现了一种用于获取BVP求解的搭配方法。将大变形理论应用于数值模拟中,以研究有限运动学对悬臂梁引入参数的影响。数值计算得出在小挠度和不稳定点处在静电力和范德华力的作用下,光束的中心线。在计算梁的中心线时,考虑到梁的横向变形所引起的轴向位移,并使用了不可扩展性条件。在静电力和/或范德华力的作用下,通过解析和数值计算来计算梁的引入参数。确定独立悬臂的分离长度和最小初始间隙,这是基本设计参数。将分析研究的结果与BVP的数值解进行比较。文献中发表的结果验证了所提出的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号