首页> 外文期刊>Nano letters >Time-Domain Ab Initio Analysis of Excitation Dynamics in a Quantum Dot/Polymer Hybrid: Atomistic Description Rationalizes Experiment
【24h】

Time-Domain Ab Initio Analysis of Excitation Dynamics in a Quantum Dot/Polymer Hybrid: Atomistic Description Rationalizes Experiment

机译:量子点/聚合物混合体中激发动力学的时域从头算分析:原子描述使实验合理化

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Hybrid organic/inorganic polymer/quantum dot (QD) solar cells are an attractive alternative to the traditional cells. The original, simple models postulate that one-dimensional polymers have continuous energy levels, while 25 Zero-dimensional QDs exhibit atom-like electronic structure. A realistic, atomistic Viewpoint provides an alternative description. Electronic states in polymers are molecule-like: finite in size and discrete in energy: QDs are composed of many atoms and have high, bulk-like densities of states. We employ ab initio time-domain simulation to model the experimentally observed ultrafast photoinduced dynamics in a QD/polymer hybrid and show that an atomistic description is essential for understanding the time-resolved experimental data. Both electron and hole transfers across the interface exhibit subpicosecond time scales. The interfacial processes are fast due to strong electronic donor acceptor, as evidenced by the densities of the photoexcited states which are delocalized between the donor and the acceptor. The nonadiabatic charge-phonon coupling is also strong) especially in the polymer, resulting in rapid energy losses. The electron transfer from the polymer is notably faster than the hole transfer from the QD, due to a significantly higher density of acceptor states. The stronger molecule-like electronic and charge-phonon Coupling in the polymer rationalizes why the electron hole recombination inside the polymer is several orders of magnitude faster than in the QD. As a result, experiments exhibit multiple transfer times for the long-lived hole inside the QD, ranging from subpicoseconds to nanoseconds. In contrast, transfer of the short-lived electron inside the polymer does not occur beyond the first picosecond. The energy lost by the hole on its transit into the polymer is accommodated by polymer's high-frequency vibrations. The energy lost by the electron injected into the QD is accommodated primarily by much lower-frequency collective and QD modes. The electron dynamics is exponential, whereas evolution of the injected hole through the low density manifold of states of the polymer is highly nonexponential. The time scale of the electron hole recombination at the interface is intermediate between those in pristine polymer and QD and is closer to that in the polymer. The detailed atomistic insights into the photoinduced charge and energy dynamics at the polymer/QD interface provide valuable guidelines for optimization of solar light harvesting and photovoltaic efficiency in modern nanoscale materials.
机译:混合有机/无机聚合物/量子点(QD)太阳能电池是传统电池的有吸引力的替代品。最初的简单模型假定一维聚合物具有连续的能级,而25个零维量子点显示出原子状的电子结构。逼真的原子观点提供了替代描述。聚合物中的电子态类似于分子:大小有限且能量离散:量子点由许多原子组成,并具有高的块状态密度。我们采用从头开始的时域仿真来模拟QD /聚合物杂化中实验观察到的超快光诱导动力学,并表明原子描述对于理解时间分辨的实验数据至关重要。跨界面的电子转移和空穴转移都表现出亚皮秒的时间尺度。由于强的电子供体受体,界面过程很快,如光激发态的密度所证明的那样,该光激发态在供体和受体之间离域。非绝热电荷-声子耦合也很强,尤其是在聚合物中,导致能量快速损失。由于受体态的密度显着较高,因此从聚合物进行的电子转移明显比从QD进行的空穴转移快。聚合物中更强的分子状电子和电荷-声子耦合更合理地解释了为什么聚合物内部的电子空穴重组比量子点中快几个数量级的原因。结果,实验显示了QD内部长寿命孔的多个转移时间,范围从亚皮秒到纳秒。相反,短寿命电子在聚合物内的转移不会超过第一皮秒。空穴在进入聚合物中时损失的能量被聚合物的高频振动所吸收。注入QD的电子所损失的能量主要由低频集体模式和QD模式提供。电子动力学是指数的,而通过聚合物状态的低密度歧管注入的空穴的演化是高度非指数的。界面处电子空穴复合的时间尺度介于原始聚合物和量子点之间,并且更接近于聚合物中的时间尺度。在聚合物/ QD界面上对光感应电荷和能量动力学的详细原子学见解为优化现代纳米级材料中的太阳光收集和光伏效率提供了有价值的指导。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号