首页> 外文期刊>Nano letters >Physical mechanism of surface roughening of the radial Ge-core/Si-shell nanowire heterostructure and thermodynamic prediction of surface stability of the InAs-core/GaAs-shell nanowire structure
【24h】

Physical mechanism of surface roughening of the radial Ge-core/Si-shell nanowire heterostructure and thermodynamic prediction of surface stability of the InAs-core/GaAs-shell nanowire structure

机译:径向Ge-核/ Si-壳纳米线异质结构表面粗糙化的物理机理和InAs-核/ GaAs-壳纳米线结构表面稳定性的热力学预测

获取原文
获取原文并翻译 | 示例
       

摘要

As a promising and typical semiconductor heterostructure at the nanoscale, the radial Ge/Si NW heterostructure, that is, the Ge-core/Si-shell NW structure, has been widely investigated and used in various nanodevices such as solar cells, lasers, and sensors because of the strong changes in the band structure and increased charge carrier mobility. Therefore, to attain high quality radial semiconductor NW heterostructures, controllable and stable epitaxial growth of core-shell NW structures has become a major challenge for both experimental and theoretical evaluation. Surface roughening is usually undesirable for the epitaxial growth of high quality radial semiconductor NW heterostructures, because it would destroy the core-shell NW structures. For example, the surface of the Ge-core/Si-shell NWs always exhibits a periodic modulation with island-like morphologies, that is, surface roughening, during epitaxial growth. Therefore, the physical understanding of the surface roughening behavior during the epitaxial growth of core-shell NW structures is essential and urgent for theoretical design and experimentally controlling the growth of high quality radial semiconductor NW heterostructures. Here, we proposed a quantitative thermodynamic theory to address the physical process of epitaxial growth of core-shell NW structures and surface roughening. We showed that the transformation from the Frank-van der Merwe mode to the Stranski-Krastanow mode during the epitaxial growth of radial semiconductor NW heterostructures is the physical origin of surface roughening. We deduced the thermodynamic criterion for the formation of the surface roughening and the phase diagram of growth and showed that the radius of the NWs and the thickness of the shell layer can not only determine the formation of the surface roughening in a core-shell NW structure, but also control the periodicity and amplitude of the surface roughness. The agreement between the theoretical results and the experimental data of the Ge-core/Si-shell NW structure implied that the established approach could be applicable to the understanding and design of various semiconductor core-shell NW structures. Consequentially, we used the established theoretical model to study the epitaxial growth of the InAs-core/GaAs-shell NW structure and predict the surface roughening formation, as well as the periodicity and amplitude of the surface roughness, which provided useful information to theoretically design and experimentally control the epitaxial growth of the radial InAs-core/GaAs-shell NW structure.
机译:作为纳米级有希望的典型半导体异质结构,径向Ge / Si NW异质结构(即Ge-core / Si-shell NW结构)已被广泛研究并用于各种纳米器件,例如太阳能电池,激光器和传感器是由于带结构的强烈变化和增加的载流子迁移率。因此,为了获得高质量的径向半导体NW异质结构,核-壳NW结构的可控和稳定的外延生长已成为实验和理论评估的主要挑战。对于高品质径向半导体NW异质结构的外延生长,表面粗糙化通常是不希望的,因为这会破坏核-壳NW结构。例如,Ge-核/ Si-壳NW的表面在外延生长期间总是表现出具有岛状形态的周期性调制,即表面粗糙。因此,对核壳NW结构外延生长过程中表面粗糙行为的物理理解对于理论设计和实验控制高质量径向半导体NW异质结构的生长至关重要。在这里,我们提出了一种定量热力学理论来解决核壳NW结构外延生长和表面粗糙化的物理过程。我们表明,在径向半导体NW异质结构的外延生长过程中,从Frank-van der Merwe模式转换为Stranski-Krastanow模式是表面粗糙的物理原因。我们推导了形成表面粗糙化的热力学判据和生长的相图,并表明了NWs的半径和壳层的厚度不仅可以决定核-壳NW结构中表面粗糙化的形成,还可以控制表面粗糙度的周期性和幅度。 Ge-Core / Si-shell NW结构的理论结果与实验数据之间的一致性表明,所建立的方法可用于理解和设计各种半导体核壳NW结构。因此,我们利用已建立的理论模型研究了InAs-核/ GaAs-壳NW结构的外延生长并预测了表面粗糙化的形成,以及表面粗糙度的周期性和振幅,这为理论设计提供了有用的信息。并通过实验控制径向InAs-核/ GaAs-壳NW结构的外延生长。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号