首页> 外文期刊>Nano letters >A stable 'flat' form of two-dimensional crystals: Could graphene, silicene, germanene be minigap semiconductors?
【24h】

A stable 'flat' form of two-dimensional crystals: Could graphene, silicene, germanene be minigap semiconductors?

机译:二维晶体的稳定“平坦”形式:石墨烯,硅烯,锗烯会成为微间隙半导体吗?

获取原文
获取原文并翻译 | 示例
           

摘要

The discovery of a flat two-dimensional crystal known as graphene has contradicted Landau-Peierls-Mermin-Wagner arguments that there is no stable flat form of such crystals. Here, we show that the "flat" shape of graphene arises due to a microscopic buckling at the smallest possible interatomic scale. We show that the graphene, silicene, and other two-dimensional crystals are stable due to transverse short-range displacements of appropriate atoms. The distortions are small and form various patterns, which we describe in a framework of Ising model with competing interactions. We show that when temperature decreases, two transitions, disorder into order and order into disorder, arise. The ordered state has a form of stripes where carbon atoms are shifted regularly with respect to the plane. The flat graphene, silicene, or germanene planes look like a microscopic "washboard" with the wavelength of about couple of interatomic spacing of appropriate sublattices, which for graphene is about 1.8-3.6 ?. At lower temperatures, the ordered state transforms into a glass. Because of up-down asymmetry in buckled graphene, silicene and other two-dimensional crystals deposited on substrate, a minibandgap may arise. We derive a criterion for the minigap formation and show how it is related to the buckling and to the graphene-substrate interaction. Because of the bandgap, there may arise new phenomena and in particular a rectification of ac current induced by microwave or infrared radiation. We show that the amplitude of direct current arising at wave mixing of two harmonics of microwave electromagnetic radiation is huge. Moreover, we predict the existence of miniexcitons and a new type of fermionic minipolaritons whose behavior can be controlled by the microwave and terahertz radiation.
机译:扁平的二维晶体(称为石墨烯)的发现与Landau-Peierls-Mermin-Wagner的论点相矛盾,后者认为没有稳定的扁平形式的此类晶体。在这里,我们显示出石墨烯的“扁平”形状是由于在最小可能的原子间尺度上的微观屈曲而产生的。我们表明,由于适当原子的横向短程位移,石墨烯,硅烯和其他二维晶体是稳定的。失真很小,并形成各种模式,我们在具有竞争性相互作用的Ising模型框架中对其进行了描述。我们表明,当温度降低时,会出现两个转变,即无序转变为无序,而无序转变为无序。有序状态具有条纹形式,其中碳原子相对于平面规则地移动。平坦的石墨烯,硅烯或锗烯平面看起来像是一个微观的“搓板”,其波长约为适当的亚晶格的原子间间距的几对,对于石墨烯而言,该间距约为1.8-3.6。在较低的温度下,有序状态转变为玻璃。由于屈曲的石墨烯,硅烯和其他沉积在基板上的二维晶体的上下不对称性,可能会产生微带隙。我们推导了微间隙形成的标准,并显示了其与屈曲以及石墨烯-基底相互作用的关系。由于带隙,可能会出现新现象,尤其是由微波或红外辐射感应产生的交流电的整流。我们表明,微波电磁辐射的两个谐波的混波产生的直流电幅度很大。而且,我们预测了微激子的存在和一种新型的铁离子微极化子,其行为可以通过微波和太赫兹辐射来控制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号