...
首页> 外文期刊>Nano Energy >Mapping of strain-piezopotential relationship along bent zinc oxide microwires
【24h】

Mapping of strain-piezopotential relationship along bent zinc oxide microwires

机译:弯曲的氧化锌微丝的应变-压电势能关系图

获取原文
获取原文并翻译 | 示例

摘要

Piezoelectric nanowire based nanogenerator is a promising technology to harvest ambient mechanical energy. It is essential to experimentally quantify the strain-piezopotential relationship on nanowires for the development of high-output nanogenerators. In this paper, 3D Kelvin probe microscopy (3DKPM) is applied to precisely mapping the piezopotential along a bent ZnO microwire (MW). In order to remove the charge screening effect and recover the actual piezopotential generated by the MW, an external DC bias was applied along the axial direction of the bent MW. This external field drove charged species in and outside of the MW to the two oppositely-biased ends, respectively, and thus minimized the screening effect. We also developed a numerical method to calculate the strain distribution along the bent ZnO MW based on its scanning electron microscopy (SEM) image, with which the strain-piezopotential relationship was obtained. The overall theoretical and experimental relationships showed a good match, indicating 3DKPM under biased condition can be an effective approach for quantifying piezopotential from strained nanomaterials. The detected piezopotential is independent of screening charge and external screening effect, and is not affected by the sharp topography variation along the edge of wires. It could serve as an important methodology for revealing nanoscale piezoelectric and flexoelectric properties.
机译:基于压电纳米线的纳米发电机是一种有前途的技术,可以收集周围的机械能。对于开发高输出纳米发电机,实验上量化纳米线上的应变-压电势关系是必不可少的。在本文中,将3D Kelvin探针显微镜(3DKPM)应用于沿着弯曲的ZnO微线(MW)精确绘制压电势。为了消除电荷屏蔽效应并恢复由MW产生的实际压电势,沿弯曲MW的轴向施加了外部DC偏压。该外部电场将MW内外的带电物质分别带到两个相对偏置的末端,从而使屏蔽效果最小。我们还开发了一种数值方法,可基于其扫描电子显微镜(SEM)图像计算沿弯曲ZnO MW的应变分布,从而获得应变-压电势。整体的理论和实验关系显示出良好的匹配性,表明在偏置条件下的3DKPM可能是从应变纳米材料定量压电势的有效方法。所检测到的压电势与屏蔽电荷和外部屏蔽效果无关,并且不受沿导线边缘的急剧形貌变化的影响。它可以作为揭示纳米级压电和柔电特性的重要方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号