首页> 外文期刊>SIAM Journal on Scientific Computing >A TAILORED CONVOLUTIONAL NEURAL NETWORK FOR NONLINEAR MANIFOLD LEARNING OF COMPUTATIONAL PHYSICS DATA USING UNSTRUCTURED SPATIAL DISCRETIZATIONS
【24h】

A TAILORED CONVOLUTIONAL NEURAL NETWORK FOR NONLINEAR MANIFOLD LEARNING OF COMPUTATIONAL PHYSICS DATA USING UNSTRUCTURED SPATIAL DISCRETIZATIONS

机译:一种定制的卷积神经网络,用于使用非结构化空间离散化对计算物理数据进行非线性流形学习

获取原文
获取原文并翻译 | 示例

摘要

We propose a nonlinear manifold learning technique based on deep convolutional autoencoders that is appropriate for model order reduction of physical systems in complex geometries. Convolutional neural networks have proven to be highly advantageous for compressing data arising from systems demonstrating a slow-decaying Kolmogorov n-width. However, these networks are restricted to data on structured meshes. Unstructured meshes are often required for performing analyses of real systems with complex geometry. Our custom graph convolution operators based on the available differential operators for a given spatial discretization effectively extend the application space of deep convolutional autoencoders to systems with arbitrarily complex geometry that are typically discretized using unstructured meshes. We propose sets of convolution operators based on the spatial derivative operators for the underlying spatial discretization, making the method particularly well suited to data arising from the solution of partial differential equations. We demonstrate the method using examples from heat transfer and fluid mechanics and show better than an order of magnitude improvement in accuracy over linear methods.
机译:我们提出了一种基于深度卷积自编码器的非线性流形学习技术,该技术适用于复杂几何中物理系统的模型阶次约简。卷积神经网络已被证明对于压缩来自表现出缓慢衰减的 Kolmogorov n 宽度的系统产生的数据非常有利。但是,这些网络仅限于结构化网格上的数据。对具有复杂几何形状的真实系统进行分析时,通常需要非结构化网格。我们的自定义图卷积算子基于给定空间离散化的可用微分算子,有效地将深度卷积自编码器的应用空间扩展到具有任意复杂几何形状的系统,这些几何形状通常使用非结构化网格进行离散化。我们提出了基于空间导数算子的卷积算子集,用于基础空间离散化,使该方法特别适用于偏微分方程求解产生的数据。我们使用传热和流体力学的例子来演示该方法,并显示出比线性方法更好的精度提高一个数量级。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号