首页> 外文期刊>Mutation Research: International Journal on Mutagenesis, Chromosome Breakage and Related Subjects >Toxicology and genetic toxicology in the new era of 'toxicogenomics': impact of '-omics' technologies.
【24h】

Toxicology and genetic toxicology in the new era of 'toxicogenomics': impact of '-omics' technologies.

机译:“毒理基因组学”新时代的毒理学和遗传毒理学:“-omics”技术的影响。

获取原文
获取原文并翻译 | 示例
       

摘要

The unprecedented advances in molecular biology during the last two decades have resulted in a dramatic increase in knowledge about gene structure and function, an immense database of genetic sequence information, and an impressive set of efficient new technologies for monitoring genetic sequences, genetic variation, and global functional gene expression. These advances have led to a new sub-discipline of toxicology: "toxicogenomics". We define toxicogenomics as "the study of the relationship between the structure and activity of the genome (the cellular complement of genes) and the adverse biological effects of exogenous agents". This broad definition encompasses most of the variations in the current usage of this term, and in its broadest sense includes studies of the cellular products controlled by the genome (messenger RNAs, proteins, metabolites, etc.). The new "global" methods of measuring families of cellular molecules, such as RNA, proteins, and intermediary metabolites have been termed "-omic" technologies, based on their ability to characterize all, or most, members of a family of molecules in a single analysis. With these new tools, we can now obtain complete assessments of the functional activity of biochemical pathways, and of the structural genetic (sequence) differences among individuals and species, that were previously unattainable. These powerful new methods of high-throughput and multi-endpoint analysis include gene expression arrays that will soon permit the simultaneous measurement of the expression of all human genes on a single "chip". Likewise, there are powerful new methods for protein analysis (proteomics: the study of the complement of proteins in the cell) and for analysis of cellular small molecules (metabonomics: the study of the cellular metabolites formed and degraded under genetic control). This will likely be extended in the near future to other important classes of biomolecules such as lipids, carbohydrates, etc. These assays provide a general capability for global assessment of many classes of cellular molecules, providing new approaches to assessing functional cellular alterations. These new methods have already facilitated significant advances in our understanding of the molecular responses to cell and tissue damage, and of perturbations in functional cellular systems.As a result of this rapidly changing scientific environment, regulatory and industrial toxicology practice is poised to undergo dramatic change during the next decade. These advances present exciting opportunities for improved methods of identifying and evaluating potential human and environmental toxicants, and of monitoring the effects of exposures to these toxicants. These advances also present distinct challenges. For example, the significance of specific changes and the performance characteristics of new methods must be fully understood to avoid misinterpretation of data that could lead to inappropriate conclusions about the toxicity of a chemical or a mechanism of action. We discuss the likely impact of these advances on the fields of general and genetic toxicology, and risk assessment. We anticipate that these new technologies will (1) lead to new families of biomarkers that permit characterization and efficient monitoring of cellular perturbations, (2) provide an increased understanding of the influence of genetic variation on toxicological outcomes, and (3) allow definition of environmental causes of genetic alterations and their relationship to human disease. The broad application of these new approaches will likely erase the current distinctions among the fields of toxicology, pathology, genetic toxicology, and molecular genetics. Instead, a new integrated approach will likely emerge that involves a comprehensive understanding of genetic control of cellular functions, and of cellular responses to alterations in normal molecular structure and function.
机译:在过去的二十年中,分子生物学史无前例的进步导致对基因结构和功能的知识急剧增加,巨大的遗传序列信息数据库,以及令人印象深刻的一套有效的新技术,可用于监测遗传序列,遗传变异和全局功能基因表达。这些进步导致了新的毒理学子学科:“毒理基因组学”。我们将毒理基因组学定义为“研究基因组的结构和活性(基因的细胞补体)与外源性药物的不利生物学效应之间的关系”。这个广泛的定义涵盖了该术语当前用法的大多数变化,并且从最广泛的意义上讲,它包括对由基因组控制的细胞产物(信使RNA,蛋白质,代谢产物等)的研究。测量细胞分子家族(例如RNA,蛋白质和中间代谢物)的新“全局”方法已被称为“ -omic”技术,因为它们具有表征分子中所有或大多数分子家族成员的能力。单一分析。使用这些新工具,我们现在可以获得对生化途径的功能活性以及个体和物种之间结构遗传(序列)差异的完整评估,而这在以前是无法实现的。这些强大的高通量和多端点分析新方法包括基因表达阵列,该阵列不久将允许在单个“芯片”上同时测量所有人类基因的表达。同样,有强大的新方法用于蛋白质分析(蛋白质组学:研究细胞中蛋白质的互补性)和分析细胞小分子(代谢组学:研究在遗传控制下形成和降解的细胞代谢产物)。这可能会在不久的将来扩展到其他重要类别的生物分子,例如脂质,碳水化合物等。这些测定法提供了对多种类别的细胞分子进行全局评估的一般能力,从而提供了评估功能性细胞改变的新方法。这些新方法已经促进了我们对细胞和组织损伤的分子反应以及功能性细胞系统扰动的理解的重大进展。由于科学环境的迅速变化,监管和工业毒理学实践必将发生巨大变化。在接下来的十年中。这些进步为改进的方法提供了令人兴奋的机会,这些方法可用于识别和评估潜在的人类和环境毒物,以及监测这些毒物暴露的影响。这些进步也带来了独特的挑战。例如,必须充分理解特定变化的重要性和新方法的性能特征,以避免对数据的误解,从而可能导致对化学物质或作用机理的毒性得出不正确的结论。我们讨论了这些进展对普通和遗传毒理学以及风险评估领域的可能影响。我们预计这些新技术将(1)导致新的生物标记家族,从而允许表征和有效监测细胞扰动;(2)进一步了解遗传变异对毒理学结果的影响;(3)定义基因改变的环境原因及其与人类疾病的关系。这些新方法的广泛应用可能会消除毒理学,病理学,遗传毒理学和分子遗传学领域之间的当前区别。取而代之的是,将出现一种新的综合方法,其中包括对细胞功能的遗传控制以及细胞对正常分子结构和功能改变的反应的全面理解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号