【24h】

Telomere dysfunction and chromosome instability

机译:端粒功能障碍和染色体不稳定

获取原文
获取原文并翻译 | 示例
       

摘要

The ends of chromosomes are composed of a short repeat sequence and associated proteins that together form a cap, called a telomere, that keeps the ends from appearing as double-strand breaks (DSBs) and prevents chromosome fusion. The loss of telomeric repeat sequences or deficiencies in telomeric proteins can result in chromosome fusion and lead to chromosome instability. The similarity between chromosome rearrangements resulting from telomere loss and those found in cancer cells implicates telomere loss as an important mechanism for the chromosome instability contributing to human cancer. Telomere loss in cancer cells can occur through gradual shortening due to insufficient telomerase, the protein that maintains telomeres. However, cancer cells often have a high rate of spontaneous telomere loss despite the expression of telomerase, which has been proposed to result from a combination of oncogene-mediated replication stress and a deficiency in DSB repair in telomeric regions. Chromosome fusion in mammalian cells primarily involves nonhomologous end joining (NHEJ), which is the major form of DSB repair. Chromosome fusion initiates chromosome instability involving breakage-fusion-bridge (B/F/B) cycles, in which dicentric chromosomes form bridges and break as the cell attempts to divide, repeating the process in subsequent cell cycles. Fusion between sister chromatids results in large inverted repeats on the end of the chromosome, which amplify further following additional B/F/B cycles. B/F/B cycles continue until the chromosome acquires a new telomere, most often by translocation of the end of another chromosome. The instability is not confined to a chromosome that loses its telomere, because the instability is transferred to the chromosome donating a translocation. Moreover, the amplified regions are unstable and form extrachromosomal DNA that can reintegrate at new locations. Knowledge concerning the factors promoting telomere loss and its consequences is therefore important for understanding chromosome instability in human cancer.
机译:染色体的末端由一个短的重复序列和相关的蛋白质组成,这些蛋白质一起形成一个称为端粒的帽,可以防止末端出现双链断裂(DSB)并防止染色体融合。端粒重复序列的缺失或端粒蛋白的缺失会导致染色体融合并导致染色体不稳定。端粒丢失导致的染色体重排与癌细胞中发现的染色体重排之间的相似性暗示端粒丢失是导致染色体不稳定导致人类癌症的重要机制。由于端粒酶(维持端粒的蛋白质)不足,可能会通过逐渐缩短而导致癌细胞中的端粒损失。然而,尽管端粒酶表达,癌细胞通常仍具有很高的自发端粒丢失率,这被认为是由癌基因介导的复制压力和端粒区域DSB修复缺陷共同导致的。哺乳动物细胞中的染色体融合主要涉及非同源末端连接(NHEJ),这是DSB修复的主要形式。染色体融合会引发涉及断裂-融合-桥(B / F / B)周期的染色体不稳定性,其中双着丝粒染色体形成桥并随着细胞试图分裂而断裂,并在随后的细胞周期中重复该过程。姐妹染色单体之间的融合会在染色体末端产生大的反向重复序列,并在进行额外的B / F / B循环后进一步放大。 B / F / B循环一直持续到染色体获得新的端粒为止,通常是通过转移另一条染色体的末端来实现的。不稳定性不限于丢失其端粒的染色体,因为不稳定性被转移到捐献易位的染色体上。而且,扩增的区域是不稳定的,并形成可以在新位置重新整合的染色体外DNA。因此,有关促进端粒丢失的因素及其后果的知识对于理解人类癌症中的染色体不稳定非常重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号