首页> 外文期刊>Revista Romana de Materiale >MECHANICAL PROPERTIES PREDICTION OF HEAVYWEIGHT CONCRETE USING GENERALIZED REGRESSION NEURAL NETWORK (GRNN)
【24h】

MECHANICAL PROPERTIES PREDICTION OF HEAVYWEIGHT CONCRETE USING GENERALIZED REGRESSION NEURAL NETWORK (GRNN)

机译:基于广义回归神经网络(GRNN)的重量级混凝土力学性能预测

获取原文
获取原文并翻译 | 示例

摘要

In this research, from zero to 100 every 10, normal aggregates were replaced with heavy aggregate (a mixture of iron ore and barite) in the concrete. A total of 110 cylindrical specimens (15×30cm) and cubic specimens (15×15cm) were used to examine the specific gravity, compressive strength, and tensile strength of Heavyweight Concrete (HWC). The test results confirmed that by substituting Heavyweight Aggregate (HWA) iron ore and barite mixture for 10 (or higher) of regular aggregates, a specific weight greater than 2600 kg/m~3 might achieve, and the resulting product classified as HWC. In the second phase of the research, to develop the Generalized Regression Neural Network (GRNN) for estimating compressive and tensile strength, 48 data records from the specimen tests were selected randomly to find the best network with minimum mean square error (MSE) and correlation coefficient. The results confirmed that the proposed informational model could adequately estimate the mechanical properties and simplify the design processes in computational intelligence structural design platforms in the future.
机译:在这项研究中,从每 10% 的 0% 到 100%,混凝土中的普通骨料被重骨料(铁矿石和重晶石的混合物)取代。共使用110个圆柱形试样(15×30cm)和立方试件(15×15cm)对重型混凝土(HWC)的比重、抗压强度和抗拉强度进行了检测。试验结果证实,用重磅骨料(HWA)铁矿石和重晶石混合物代替10%(或更高)的普通骨料,可以达到大于2600 kg/m~3的比重,所得产品被归类为HWC。在研究的第二阶段,为了开发用于估计抗压强度和拉伸强度的广义回归神经网络(GRNN),从样本测试中随机选择了48条数据记录,以找到均方误差(MSE)和相关系数最小的最佳网络。结果证实,所提出的信息模型可以充分估计未来计算智能结构设计平台的力学性能并简化设计流程。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号