首页> 外文期刊>Molecules >Determining Chemical Reactivity Driving Biological Activity from SMILES Transformations: The Bonding Mechanism of Anti-HIV Pyrimidines
【24h】

Determining Chemical Reactivity Driving Biological Activity from SMILES Transformations: The Bonding Mechanism of Anti-HIV Pyrimidines

机译:从SMILES转化中确定驱动生物活性的化学反应性:抗HIV嘧啶的键合机制

获取原文
       

摘要

Assessing the molecular mechanism of a chemical-biological interaction and bonding stands as the ultimate goal of any modern quantitative structure-activity relationship (QSAR) study. To this end the present work employs the main chemical reactivity structural descriptors (electronegativity, chemical hardness, chemical power, electrophilicity) to unfold the variational QSAR though their min-max correspondence principles as applied to the Simplified Molecular Input Line Entry System (SMILES) transformation of selected uracil derivatives with anti-HIV potential with the aim of establishing the main stages whereby the given compounds may inhibit HIV infection. The bonding can be completely described by explicitly considering by means of basic indices and chemical reactivity principles two forms of SMILES structures of the pyrimidines, the Longest SMILES Molecular Chain (LoSMoC) and the Branching SMILES (BraS), respectively, as the effective forms involved in the anti-HIV activity mechanism and according to the present work, also necessary intermediates in molecular pathways targeting/docking biological sites of interest.
机译:评估化学生物相互作用和键合的分子机制是任何现代定量构效关系(QSAR)研究的最终目标。为此,本研究采用了主要的化学反应性结构描述符(电负性,化学硬度,化学功率,亲电性),通过将其最小-最大对应原理应用于简化的分子输入线输入系统(SMILES)变换来展现变异QSAR。筛选具有抗HIV潜力的尿嘧啶衍生物,目的是确定给定化合物可以抑制HIV感染的主要阶段。可以通过基本指标和化学反应原理明确考虑到嘧啶的两种SMILES结构形式,即最长SMILES分子链(LoSMoC)和支链SMILES(BraS),作为涉及的有效形式,从而完全描述键合在抗HIV活性机制中的作用以及根据本发明的工作,也是靶向/对接感兴趣的生物部位的分子途径中的必要中间体。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号