...
首页> 外文期刊>Multibody system dynamics >Combining vibrational linear-by-part dynamics and kinetic-based decoupling of the dynamics for multiple smooth impacts with redundancy
【24h】

Combining vibrational linear-by-part dynamics and kinetic-based decoupling of the dynamics for multiple smooth impacts with redundancy

机译:结合振动的线性零件动力学和基于动力学的动力学解耦,以实现多个平滑冲击和冗余

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

This article proposes a simple linear-by-part approach for perfectly elastic 3D multiple-point impacts in multibody systems with perfect constraints and no friction, applicable both to nonredundant and redundant cases (where the normal velocities of the contact points are not independent). The approach is based on a vibrational dynamical model, and uses the so called "independent contact space." Two different time and space scales are used. At the macroscale, the impact interval is negligible, and the overall system configuration is assumed to be constant. Consequently, the inertia and Jacobian matrices appearing in the formulation are also constant. The dynamics at the contact points is simulated through stiff springs undergoing very small deformations and generating system vibrations at the microscale. The total impact interval is split into phases, each corresponding to a constant set of compressed springs responsible for an elastic potential energy. For each phase, a reduced inertia matrix associated with a set of contact points, and a reduced stiffness matrix obtained from the potential energy (associated with all contact points undergoing compression) are introduced. From these matrices, a modal analysis is performed yielding an all-analytical solution within each phase. The main difference between the redundant and nonredundant cases concerns the inertia and stiffness matrices for modal analysis. While in the former case, both are related to the total set of contact points (total contact space), in the latter one they are related to two subsets: a subset of independent points for the inertia matrix (independent contact space), and the total set for the stiffness matrix. A second difference concerns the calculation of the normal impulses generated at each contact point. For the nonredundant case, they can be directly obtained from the total incremental normal velocities of the contact points through the inertia and stiffness matrices. For the redundant one, they can be obtained by adding up their incremental values at each impact phase. This requires an updating of a new effective stiffness matrix depending on the contact points undergoing compression at each phase. Four planar application cases are presented involving a single body and a multibody system colliding with a smooth ground.
机译:本文提出了一种简单的线性部分方法,该方法可在具有完美约束且无摩擦的多体系统中实现完美弹性的3D多点冲击,适用于非冗余和冗余情况(接触点的法向速度不是独立的)。该方法基于振动动力学模型,并使用所谓的“独立接触空间”。使用了两种不同的时空尺度。在宏观尺度上,影响间隔可以忽略不计,并且假定整个系统配置是恒定的。因此,公式中出现的惯性矩阵和雅可比矩阵也是恒定的。接触点处的动力学是通过刚性弹簧模拟的,该弹簧承受很小的变形并在微尺度上产生系统振动。总的冲击间隔分为多个阶段,每个阶段对应于负责弹性势能的一组恒定压缩弹簧。对于每个阶段,引入与一组接触点关联的简化惯性矩阵,以及从势能(与所有经受压缩的接触点关联)获得的降低刚度矩阵。从这些矩阵进行模态分析,得出每个阶段内的全解析解。冗余和非冗余情况之间的主要区别在于用于模态分析的惯性和刚度矩阵。在前一种情况下,两者都与接触点的总集合(总接触空间)有关,而在后一种情况下,它们与两个子集有关:惯性矩阵的独立点的子集(独立接触空间)和刚度矩阵的总集合。第二个差异涉及在每个接触点生成的法向脉冲的计算。对于非冗余情况,可以通过惯性和刚度矩阵直接从接触点的总增量法向速度获得它们。对于冗余的,可以通过在每个影响阶段将其增量值相加来获得。这需要根据在每个阶段受到压缩的接触点来更新新的有效刚度矩阵。提出了四个平面应用案例,其中涉及一个单体和一个多体系统与光滑的地面碰撞。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号