...
首页> 外文期刊>Molecular pharmacology. >Morphine induces redox-based changes in global DNA methylation and retrotransposon transcription by inhibition of excitatory amino acid transporter type 3-mediated cysteine uptake
【24h】

Morphine induces redox-based changes in global DNA methylation and retrotransposon transcription by inhibition of excitatory amino acid transporter type 3-mediated cysteine uptake

机译:吗啡通过抑制兴奋性氨基酸转运蛋白3型介导的半胱氨酸的摄取诱导基于DNA的甲基化和反转录转座子转录的基于氧化还原的变化

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Canonically, opioids influence cells by binding to a G protein- coupled opioid receptor, initiating intracellular signaling cascades, such as protein kinase, phosphatidylinositol 3-kinase, and extracellular receptor kinase pathways. This results in several downstream effects, including decreased levels of the reduced form of glutathione (GSH) and elevated oxidative stress, as well as epigenetic changes, especially in retrotransposons and heterochromatin, although the mechanism and consequences of these actions are unclear. We characterized the acute and long-term influence of morphine on redox and methylation status (including DNA methylation levels) in cultured neuronal SH-SY5Y cells. Acting via μ-opioid receptors, morphine inhibits excitatory amino acid transporter type 3-mediated cysteine uptake via multiple signaling pathways, involving different G proteins and protein kinases in a temporal manner. Decreased cysteine uptake was associated with decreases in both the redox and methylation status of neuronal cells, as defined by the ratios of GSH to oxidized forms of glutathione and S-adenosylmethionine to S-adenosylhomocysteine levels, respectively. Further, morphine induced global DNA methylation changes, including CpG sites in long interspersed nuclear elements (LINE-1) retrotransposons, resulting in increased LINE-1 mRNA. Together, these findings illuminate the mechanism by which morphine, and potentially other opioids, can influence neuronal-cell redox and methylation status including DNA methylation. Since epigenetic changes are implicated in drug addiction and tolerance phenomenon, this study could potentially extrapolate to elucidate a novel mechanism of action for other drugs of abuse.
机译:典型地,阿片类药物通过与G蛋白偶联的阿片类药物受体结合,启动细胞内信号传导级联反应,例如蛋白激酶,磷脂酰肌醇3-激酶和细胞外受体激酶途径,从而影响细胞。这导致了几种下游效应,包括谷胱甘肽(GSH)还原形式的降低水平和氧化应激的升高,以及表观遗传变化,特别是逆转座子和异染色质,尽管这些作用的机制和结果尚不清楚。我们表征了吗啡对神经元SH-SY5Y细胞中氧化还原和甲基化状态(包括DNA甲基化水平)的急性和长期影响。吗啡通过μ阿片受体起作用,通过多种信号途径抑制兴奋性氨基酸转运蛋白3型介导的半胱氨酸的摄取,这些信号途径在时间上涉及不同的G蛋白和蛋白激酶。半胱氨酸摄取的减少与神经元细胞氧化还原和甲基化状态的降低有关,这分别由谷胱甘肽与氧化型谷胱甘肽和S-腺苷甲硫氨酸与S-腺苷同型半胱氨酸水平的比率所定义。此外,吗啡诱导的总体DNA甲基化变化,包括长穿插的核元件(LINE-1)逆转座子中的CpG位点,导致LINE-1 mRNA增加。这些发现共同阐明了吗啡和潜在的其他阿片类药物影响神经元细胞氧化还原和甲基化状态(包括DNA甲基化)的机制。由于表观遗传学变化与药物成瘾和耐受现象有关,因此该研究可能可以推断以阐明其他滥用药物的新作用机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号