首页> 外文期刊>Molecular ecology resources >Next-generation DNA barcoding: using next-generation sequencing to enhance and accelerate DNA barcode capture from single specimens
【24h】

Next-generation DNA barcoding: using next-generation sequencing to enhance and accelerate DNA barcode capture from single specimens

机译:下一代DNA条形码:使用下一代测序来增强和加速从单个样本中捕获DNA条形码

获取原文
获取原文并翻译 | 示例
           

摘要

DNA barcoding is an efficient method to identify specimens and to detect undescribed/cryptic species. Sanger sequencing of individual specimens is the standard approach in generating large-scale DNA barcode libraries and identifying unknowns. However, the Sanger sequencing technology is, in some respects, inferior to next-generation sequencers, which are capable of producing millions of sequence reads simultaneously. Additionally, direct Sanger sequencing of DNA barcode amplicons, as practiced in most DNA barcoding procedures, is hampered by the need for relatively high-target amplicon yield, coamplification of nuclear mitochondrial pseudogenes, confusion with sequences from intracellular endosymbiotic bacteria (e.g. Wolbachia) and instances of intraindividual variability (i.e. heteroplasmy). Any of these situations can lead to failed Sanger sequencing attempts or ambiguity of the generated DNA barcodes. Here, we demonstrate the potential application of next-generation sequencing platforms for parallel acquisition of DNA barcode sequences from hundreds of specimens simultaneously. To facilitate retrieval of sequences obtained from individual specimens, we tag individual specimens during PCR amplification using unique 10-mer oligonucleotides attached to DNA barcoding PCR primers. We employ 454 pyrosequencing to recover full-length DNA barcodes of 190 specimens using 12.5% capacity of a 454 sequencing run (i.e. two lanes of a 16 lane run). We obtained an average of 143 sequence reads for each individual specimen. The sequences produced are fulllength DNA barcodes for all but one of the included specimens. In a subset of samples, we also detected Wolbachia, nontarget species, and heteroplasmic sequences. Next-generation sequencing is of great value because of its protocol simplicity, greatly reduced cost per barcode read, faster throughout and added information content.
机译:DNA条形码是识别标本和检测未描述/隐性物种的有效方法。对单个样本进行Sanger测序是生成大规模DNA条形码文库和鉴定未知物的标准方法。但是,Sanger测序技术在某些方面不如下一代测序仪,后者能够同时产生数百万个序列读数。此外,在大多数DNA条形码程序中,对DNA条码扩增子进行直接Sanger测序受到相对较高目标扩增子产量,核线粒体假基因共扩增,与细胞内内共生细菌(例如Wolbachia)序列的混淆以及实例的阻碍。个体内变异性(即异质性)。这些情况中的任何一种都可能导致Sanger测序尝试失败或生成的DNA条形码含糊不清。在这里,我们演示了下一代测序平台在同时从数百个标本中并行采集DNA条码序列的潜在应用。为了方便检索从单个标本获得的序列,我们在PCR扩增过程中使用连接到DNA条形码PCR引物的独特10-mer寡核苷酸标记了单个标本。我们使用454焦磷酸测序,以454测序运行的12.5%容量(即16泳道的两个泳道)回收190个样本的全长DNA条形码。我们获得了每个样品的143个序列读数的平均值。产生的序列是除其中一个样本外的所有样本的全长DNA条码。在样本的子集中,我们还检测到了沃尔巴克氏菌,非靶标物种和异质序列。下一代测序由于其协议简单性,极大地降低了每次条形码读取的成本,更快的速度以及增加的信息内容而具有巨大的价值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号