首页> 外文期刊>Knowledge-based systems >Sequential ensemble learning for next item recommendation
【24h】

Sequential ensemble learning for next item recommendation

机译:用于下一个项目推荐的顺序集成学习

获取原文
获取原文并翻译 | 示例

摘要

Predicting the next item that users may engage in is a key task of recommender systems, and many methods have been proposed to deal with this task from different aspects. Theoretically, the proper ensemble of multiple different methods (a.k.a. base models) can make more accurate and stable recommendations. However, most of the existing ensemble methods rely on static aggregation strategies, which fail to capture base models' dynamic predictive abilities for each user over time. In addition, most of the existing diversity measures used in regression or classification ensemble methods rely on a distance metric of base models' outputs, which makes it intractably apply for next-item recommendation whose base models output sequential ranking lists. To solve the above problems, we propose a Sequential Ensemble Method, named SEM, to aggregate different base models for next-item recommendation. We assume users' concentration and base models' expertise can be inferred from users' sequential behaviors and base models' prediction results. Therefore, we propose to explicitly model base models' dynamic predictive abilities on different users over time based on users' concentration and base models' expertise. In addition, we propose a new diversity measure for sequential ranking ensemble, which can perform diversity-based learning over time for better performance of next-item recommendation. Extensive experiments on six real-world data sets show that our method consistently outperforms state-of-the-art methods. COPY; 2023 Elsevier B.V. All rights reserved.
机译:预测用户可能参与的下一个项目是推荐系统的一项关键任务,并且已经从不同方面提出了许多方法来处理这项任务。从理论上讲,多种不同方法(又称基础模型)的适当集成可以提出更准确和稳定的建议。然而,大多数现有的集成方法都依赖于静态聚合策略,这些策略无法捕获基础模型随时间推移每个用户的动态预测能力。此外,回归或分类集成方法中使用的大多数现有多样性度量都依赖于基本模型输出的距离度量,这使得它难以适用于其基本模型输出顺序排名列表的下一个项目推荐。为了解决上述问题,我们提出了一种名为SEM的顺序集成方法,用于聚合不同的基础模型,用于下一个项目推荐。我们假设用户的注意力和基础模型的专业知识可以从用户的顺序行为和基础模型的预测结果中推断出来。因此,我们建议根据用户的注意力和基础模型的专业知识,对不同用户随时间推移对基础模型的动态预测能力进行显式建模。此外,我们提出了一种新的顺序排名集合的多样性度量,它可以随着时间的推移进行基于多样性的学习,以更好地执行下一个项目推荐。对六个真实世界数据集的广泛实验表明,我们的方法始终优于最先进的方法。2023 爱思唯尔 B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号