...
首页> 外文期刊>Biological & pharmaceutical bulletin >Production of the Rare Ginsenosides Compound K, Compound Y, and Compound Mc by a Thermostable beta-Glycosidase from Sulfolobus acidocaldarius
【24h】

Production of the Rare Ginsenosides Compound K, Compound Y, and Compound Mc by a Thermostable beta-Glycosidase from Sulfolobus acidocaldarius

机译:嗜热的β-糖苷酶从嗜酸硫杆菌中生产稀有的人参皂苷化合物K,化合物Y和化合物Mc

获取原文
获取原文并翻译 | 示例
           

摘要

The rare ginsenosides compound K, compound Y, and compound Mc were produced from the major ginsenosides Rh-1, Rb-2, Rc, and Rd by a thermostable beta-glycosidase from Sulfolobus acidocaldarius via three pathways: Rb-1→ Rd → compound K, Rb-2 →compound Y → compound K, and Rc →compound Mc. Each of the ginsenosides was identified by high-performance liquid chromatography using standards and liquid chromatography-mass spectrometry based on their molecular weights. The catalytic efficiency of the enzyme for ginsenosides followed the order Rb-1 (4.8)>Rc (4.5)>Rd (1.0)>Rb_2 (0.77 mM~(-1) min~(-1)). The enzyme converted 1 mg/ml reagent-grade Rb-1, Rb-2, and Re to 0.53 mg/ml compound K, 0.56 mg/ml compound Y, and 0.70 mg/ml compound Mc, respectively, at pH 5.5 and 85 degrees C after 180 min, corresponding to mole conversion yields of 94, 80, and 100% (mol/mol), respectively. The enzyme converted the major ginsenosides Rb_1, Rb_2, Rc, and Rd in 10% (w/v) ginseng root extract to the rare ginsenosides with a mole yield of 99% after 24 h. These results suggest that beta-glycosidase from S. acidocaldarius can be used to produce compound K, compound Y, and compound Mc.
机译:稀有的人参皂甙化合物K,化合物Y和化合物Mc是由人参皂甙Rh-1,Rb-2,Rc和Rd通过耐高温的Sulfolobus acidocaldarius的β-糖苷酶通过三种途径产生的:Rb-1→Rd→化合物K,Rb-2→化合物Y→化合物K,Rc→化合物Mc。通过使用标准品的高效液相色谱和基于其分子量的液相色谱-质谱法鉴定每种人参皂苷。该酶对人参皂苷的催化效率依次为Rb-1(4.8)> Rc(4.5)> Rd(1.0)> Rb_2(0.77 mM〜(-1)min〜(-1))。在pH 5.5和85下,酶分别将1 mg / ml试剂级Rb-1,Rb-2和Re分别转化为0.53 mg / ml的化合物K,0.56 mg / ml的化合物Y和0.70 mg / ml的化合物Mc。 180分钟后在100℃下转化,相应的摩尔转化率分别为94%,80%和100%(mol / mol)。该酶将24%的10%(w / v)人参根提取物中的主要人参皂苷Rb_1,Rb_2,Rc和Rd转化为稀有的人参皂苷,摩尔产率为99%。这些结果表明,来自嗜酸链球菌的β-糖苷酶可用于生产化合物K,化合物Y和化合物Mc。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号