首页> 外文期刊>Wind Energy Science >Data-driven farm-wide fatigue estimation on jacket-foundation OWTs for multiple SHM setups
【24h】

Data-driven farm-wide fatigue estimation on jacket-foundation OWTs for multiple SHM setups

机译:针对多个 SHM 设置的导管架基础 OWT 进行数据驱动的农场范围疲劳估计

获取原文
获取原文并翻译 | 示例

摘要

The sustained development over the past decades of the offshore wind industry has seen older wind farms beginning to reach their design lifetime. This has led to a greater interest in wind turbine fatigue, the remaining useful lifetime and lifetime extensions. In an attempt to quantify the progression of fatigue life for offshore wind turbines, also referred to as a fatigue assessment, structural health monitoring (SHM) appears as a valuable contribution. Accurate information from a SHM system can enable informed decisions regarding lifetime extensions. Unfortunately direct measurement of fatigue loads typically revolves around the use of strain gauges, and the installation of strain gauges on all turbines of a given farm is generally not considered economically feasible. However, when we consider that great numbers of data, such as supervisory control and data acquisition (SCADA) and accelerometer data (of cheaper installation than strain gauges), are already being captured, these data might be used to circumvent the lack of direct measurements. It is then highly relevant to know what is the minimal sensor instrumentation required for a proper fatigue assessment. In order to determine this minimal instrumentation, a data-driven methodology is developed for real-world jacket-foundation offshore wind turbines (OWTs). In the current study the availability of high-frequency SCADA (1 Hz) and acceleration data (>1 Hz) as well as regular 10 min SCADA is taken as the starting point. Along these measured values, the current work also investigates the inclusion of an estimate of the quasi-static thrust load using the 1 s SCADA using an artificial neural network (ANN). After data collection all data are transformed to features on a 10 min interval (feature generation). When considering all possible variations a total of 430 features was obtained. To reduce the dimensionality of the problem this work performs a comparative analysis of feature selection algorithms. The features selected by each method are compared and related to the sensors to decide on the most cost-effective instrumentation of the OWT. The variables chosen by the best-performing feature selection algorithm then serve as the input for a second ANN, which estimates the tower fore-aft (FA) bending moment damage equivalent loads (DELs), a valuable metric closely related to fatigue. This approach can then be understood as a two-tier model: the first tier concerns itself with engineering and processing 10 min features, which will serve as an input for the second tier that estimates the DELs. It is this two-tier methodology that is used to assess the performance of eight realistic instrumentation setups (ranging from 10 min SCADA to 1 s SCADA, thrust load and dedicated tower SHM accelerometers). Amongst other findings, it was seen that accelerations are essential for the model's generalization. The best-performing instrumentation setup is looked at in greater depth, with validation results of the tower FA DEL ANN model showing an accuracy of around 1 (MAE) for the training turbine and below 3 for other turbines, with a slight underprediction of fatigue rates. Finally, the ANN DEL estimation model - based on two intermediate instrumentation setups (combinations of 1 s SCADA, thrust load, low quality accelerations) - is employed in a farm-wide setting, and the probable causes for outlier behaviour are investigated.
机译:过去几十年海上风电行业的持续发展使较旧的风电场开始达到其设计寿命。这导致了人们对风力涡轮机疲劳、剩余使用寿命和寿命延长的更大兴趣。为了量化海上风力涡轮机疲劳寿命的进展,也称为疲劳评估,结构健康监测(SHM)似乎是一项有价值的贡献。来自 SHM 系统的准确信息可以做出有关寿命延长的明智决策。不幸的是,疲劳载荷的直接测量通常围绕着应变片的使用展开,并且在给定农场的所有涡轮机上安装应变片通常被认为在经济上不可行。然而,当我们考虑到已经捕获了大量数据,例如监控和数据采集 (SCADA) 和加速度计数据(安装成本比应变计便宜),这些数据可用于规避缺乏直接测量的问题。因此,了解正确疲劳评估所需的最小传感器仪器非常重要。为了确定这种最小的仪器,为现实世界的导管架基础海上风力涡轮机 (OWT) 开发了一种数据驱动的方法。在目前的研究中,以高频SCADA(1 Hz)和加速度数据(>1 Hz)以及常规10分钟SCADA的可用性为起点。根据这些测量值,本研究还研究了使用人工神经网络 (ANN) 使用 1 s SCADA 对准静态推力载荷的估计。数据收集后,所有数据将以 10 分钟的间隔(特征生成)转换为要素。在考虑所有可能的变化时,总共获得了 430 个特征。为了降低问题的维度,本文对特征选择算法进行了比较分析。对每种方法选择的特征进行比较并与传感器相关联,以确定 OWT 最具成本效益的仪器。然后,由性能最佳的特征选择算法选择的变量作为第二个 ANN 的输入,该 ANN 估计塔前后 (FA) 弯矩损伤等效载荷 (DEL),这是一个与疲劳密切相关的有价值的指标。然后,这种方法可以理解为一个两层模型:第一层关注工程和处理 10 分钟特征,这将作为估计 DEL 的第二层的输入。正是这种两层方法用于评估八种实际仪器设置(从 10 分钟 SCADA 到 1 秒 SCADA、推力载荷和专用塔式 SHM 加速度计)的性能。在其他发现中,可以看出加速度对于模型的泛化至关重要。更深入地研究了性能最佳的仪器设置,塔式 FA DEL ANN 模型的验证结果显示,训练涡轮机的精度约为 1% (MAE),其他涡轮机的精度低于 3%,疲劳率略有低估。最后,在农场范围内采用基于两种中间仪器设置(1 s SCADA、推力载荷、低质量加速度的组合)的ANN DEL估计模型,并研究了异常行为的可能原因。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号