首页> 外文期刊>Molecular biology of the cell >Rapid cycling and precocious termination of G1 phase in cells expressing CDK1AF
【24h】

Rapid cycling and precocious termination of G1 phase in cells expressing CDK1AF

机译:表达CDK1AF的细胞中G1期的快速循环和早熟终止

获取原文
获取原文并翻译 | 示例
           

摘要

In Xenopus embryos, the cell cycle is driven by an autonomous biochemical oscillator that controls the periodic activation and inactivation of cyclin B1-CDK1. The oscillator circuit includes a system of three interlinked positive and double-negative feedback loops (CDK1 -> Cdc25 -> CDK1; CDK1 -vertical bar Wee1 -vertical bar CDK1; and CDK1 -vertical bar Myt1 -vertical bar CDK1) that collectively function as a bistable trigger. Previous work established that this bistable trigger is essential for CDK1 oscillations in the early embryonic cell cycle. Here, we assess the importance of the trigger in the somatic cell cycle, where checkpoints and additional regulatory mechanisms could render it dispensable. Our approach was to express the phosphorylation site mutant CDK1AF, which short-circuits the feedback loops, in HeLa cells, and to monitor cell cycle progression by live cell fluorescence microscopy. We found that CDK1AF-expressing cells carry out a relatively normal first mitosis, but then undergo rapid cycles of cyclin B1 accumulation and destruction at intervals of 3-6 h. During these cycles, the cells enter and exit M phase-like states without carrying out cytokinesis or karyokinesis. Phenotypically similar rapid cycles were seen in Wee1 knockdown cells. These findings show that the interplay between CDK1, Wee1/Myt1, and Cdc25 is required for the establishment of G1 phase, for the normal similar to 20-h cell cycle period, and for the switch-like oscillations in cyclin B1 abundance characteristic of the somatic cell cycle. We propose that the HeLa cell cycle is built upon an unreliable negative feedback oscillator and that the normal high reliability, slow pace and switch-like character of the cycle is imposed by a bistable CDK1/Wee1/Myt1/Cdc25 system.
机译:在非洲爪蟾胚胎中,细胞周期由自主生化振荡器驱动,该振荡器控制细胞周期蛋白B1-CDK1的周期性激活和失活。振荡器电路包括一个由三个相互关联的正负反馈回路组成的系统(CDK1-> Cdc25-> CDK1; CDK1-垂直线Wee1-垂直线CDK1;以及CDK1-垂直线Myt1-垂直线CDK1)双稳态触发器。先前的工作表明,这种双稳态触发对于早期胚胎细胞周期中CDK1振荡至关重要。在这里,我们评估了触发在体细胞周期中的重要性,其中检查点和其他调节机制可能使其不再需要。我们的方法是在HeLa细胞中表达磷酸化位点突变体CDK1AF,它使反馈回路短路,并通过活细胞荧光显微镜监测细胞周期进程。我们发现,表达CDK1AF的细胞先进行相对正常的有丝分裂,然后以3-6小时的间隔快速进行细胞周期蛋白B1的积累和破坏。在这些周期中,细胞进入和退出M期样状态,而不进行胞质分裂或核运动。在表型上相似的快速周期在Wee1击倒细胞中看到。这些发现表明,CDG1,Wee1 / Myt1和Cdc25之间的相互作用对于建立G1期,类似于20小时细胞周期的正常周期以及细胞周期蛋白B1的开关样振荡是必需的。体细胞周期。我们建议HeLa细胞周期建立在一个不可靠的负反馈振荡器上,并且该周期的正常高可靠性,慢节奏和类似开关的特性是由双稳态CDK1 / Wee1 / Myt1 / Cdc25系统施加的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号