首页> 外文期刊>Molecular biology of the cell >Catabolite degradation of fructose-1,6-bisphosphatase in the yeast Saccharomyces cerevisiae: A genome-wide screen identifies eight novel GID genes and indicates the existence of two degradation pathways
【24h】

Catabolite degradation of fructose-1,6-bisphosphatase in the yeast Saccharomyces cerevisiae: A genome-wide screen identifies eight novel GID genes and indicates the existence of two degradation pathways

机译:酵母酿酒酵母中果糖-1,6-双磷酸酶的分解代谢降解:全基因组筛选可识别八个新的GID基因,并表明存在两个降解途径

获取原文
获取原文并翻译 | 示例
           

摘要

Metabolic adaptation of Saccharomyces cerevisiae cells from a nonfermentable carbon source to glucose induces selective, rapid breakdown of the gluconeogenetic key enzyme fructose-1,6-bisphosphatase (FBPase), a process called catabolite degradation. Herein, we identify eight novel GID genes required for proteasome-dependent catabolite degradation of FBPase. Four yeast proteins contain the CTLH domain of unknown function. All of them are Gid proteins. The site of catabolite degradation has been controversial until now. Two FBPase degradation pathways have been described, one dependent on the cytosolic ubiquitin-proteasome machinery, and the other dependent on vacuolar proteolysis. Interestingly, three of the novel Gid proteins involved in ubiquitin-proteasome-dependent degradation have also been reported by others to affect the vacuolar degradation pathway. As shown herein, additional genes suggested to be essential for vacuolar degradation are unnecessary for proteasome-dependent degradation. These data raise the question as to whether two FBPase degradation pathways exist that share components. Detailed characterization of Gid2p demonstrates that it is part of a soluble, cytosolic protein complex of at least 600 kDa. Gid2p is necessary for FBPase ubiquitination. Our studies have not revealed any involvement of vesicular intermediates in proteasome-dependent FBPase degradation. The influence of Ubp14p, a deubiquitinating enzyme, on proteasome-dependent catabolite degradation was further uncovered. [References: 43]
机译:酿酒酵母细胞从不可发酵的碳源到葡萄糖的代谢适应性诱导了糖原异生关键酶果糖-1,6-双磷酸酶(FBPase)的选择性快速分解,这一过程称为分解代谢物降解。在本文中,我们确定了蛋白酶体依赖的分解代谢物降解FBPase所需的八个新的GID基因。四种酵母蛋白包含功能未知的CTLH结构域。它们都是吉德蛋白。迄今为止,分解代谢物的降解位置一直是有争议的。已经描述了两种FBPase降解途径,一种依赖于胞质泛素-蛋白酶体机制,另一种依赖于液泡蛋白水解。有趣的是,其他人也已经报道了涉及泛素-蛋白酶体依赖性降解的三种新型Gid蛋白会影响液泡降解途径。如本文所示,蛋白酶体依赖性降解不需要额外的基因,提示其对于液泡降解是必不可少的。这些数据提出了关于是否存在两个共享组分的FBPase降解途径的问题。 Gid2p的详细表征表明,它是至少600 kDa的可溶性胞质蛋白复合物的一部分。 Gid2p是FBPase泛素化所必需的。我们的研究尚未发现囊泡中间体参与蛋白酶体依赖性FBPase降解。进一步发现了泛素化酶Ubp14p对依赖蛋白酶体的分解代谢产物降解的影响。 [参考:43]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号