...
首页> 外文期刊>Measurement Science & Technology >Confocal micro-Pi V measurements of three-dimensional profiles of cell suspension flow in a square microchannel
【24h】

Confocal micro-Pi V measurements of three-dimensional profiles of cell suspension flow in a square microchannel

机译:方形微通道中细胞悬浮液流动的三维轮廓的共聚焦Micro-Pi V测量

获取原文
获取原文并翻译 | 示例

摘要

A detailed measurement of the blood flow velocity profile in microchannels in vitro is fundamental to better understand the biomechanics of microcirculation. Therefore it is very important to determine the influence of suspended blood cells on the flow behaviour with high accuracy and spatial resolution. We measured the flow of blood cells suspended in a physiological fluid within a square microchannel using a confocal particle image velocimetry (PIV) system and compared it to pure water. This emerging technology combines a conventional PIV system with a spinning confocal microscope and has the ability to obtain high-resolution images and three-dimensional (3D) optical section velocity measurements. The good agreement obtained between the measured and estimated results suggests that macroscale flow theory can be used to predict the flow behaviour of a homogeneous fluid within a 100μm square microchannel. Our results also demonstrated the potential of the confocal system for generating 3D profiles and consequently obtaining detailed information on microscale effects in microchannels using both homogeneous and non-homogeneous fluids, such as a suspension of blood cells. Furthermore, the results obtained from our confocal micro-PIV system show the ability of this system to measure velocities up to 0.52 mm s{sup}(-1) in a blood cell suspension fluid.
机译:体外微通道中血流速度分布的详细测量对于更好地了解微循环的生物力学至关重要。因此,以高精度和空间分辨率确定悬浮血细胞对流动行为的影响非常重要。我们使用共聚焦粒子图像测速(PIV)系统测量了方形微通道内悬浮在生理液中的血细胞流量,并将其与纯水进行了比较。这项新兴技术将传统的PIV系统与旋转共聚焦显微镜相结合,并具有获取高分辨率图像和三维(3D)光学截面速度测量的能力。测量结果和估计结果之间的良好一致性表明,宏观流理论可用于预测100μm方形微通道内均质流体的流动行为。我们的结果还证明了共聚焦系统产生3D轮廓的潜力,并因此获得了使用均质和非均质流体(例如血细胞悬浮液)的微通道中微尺度效应的详细信息。此外,从我们的共聚焦微型PIV系统获得的结果表明,该系统能够测量血细胞悬浮液中高达0.52 mm s {sup}(-1)的速度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号