首页> 外文期刊>transactions of the korean institute of electrical engineers >A Study on the Practical Implementation Technique of Motor Gear Fault Diagnosis Using a Mix-Up Algorithm and Auto Encoder
【24h】

A Study on the Practical Implementation Technique of Motor Gear Fault Diagnosis Using a Mix-Up Algorithm and Auto Encoder

机译:基于混搭算法和自动编码器的电机齿轮故障诊断实用实现技术研究

获取原文

摘要

© 2024 Korean Institute of Electrical Engineers. All rights reserved.In this paper, a practical data acquisition method and fault diagnosis method for applying motor fault diagnosis in the field are studied. Since it is very difficult to acquire fault data in the field, unsupervised learning methods that can be trained using only normal state data are mainly used. However, unsupervised learning methods are very vulnerable to disturbances and are difficult to express the fault level. Disturbances in the field include electrical noise, which can cause data acquisition devices to fail due to low power quality in the field and affect the measured signal, and mechanical noise, such as external vibrations, which directly affect the operation of the electric motor. To minimize the impact of electrical noise, it is common to use hardware filters. Unlike previous studies that use theoretical cutoff frequency setting methods, this paper proposes a method to find the appropriate cutoff frequency using LRP(Layer-wise Relevance Propagation) analysis, one of the XAI(eXplainable A.I) techniques, for practical data acquisition. Fault diagnosis in the field requires robust unsupervised learning algorithms that can ignore the presence of mechanical noise in the signal, such as transient shocks. This is solved by post-processing the output of the auto-encoder with a moving average filter. To represent the fault level a data generation technique, the mix-up algorithm, is used. A method is proposed to threshold the auto-encoder multiple times with data generated by the mix-up algorithm. This proposed method shows the availability of motor fault diagnosis considering the on-site data.
机译:© 2024 年韩国电气工程师学会。保留所有权利。本文研究了一种实用的数据采集方法和故障诊断方法,用于电机故障诊断的现场应用。由于在现场获取故障数据非常困难,因此主要使用仅使用正常状态数据进行训练的无监督学习方法。然而,无监督学习方法非常容易受到干扰,并且难以表达故障水平。现场干扰包括电噪声,电噪声会导致数据采集设备因现场电能质量低而失效,影响测量信号,以及机械噪声,例如外部振动,直接影响电动机的运行。为了尽量减少电气噪声的影响,通常使用硬件滤波器。与以往采用理论截止频率设定方法的研究不同,本文提出了一种利用XAI(eXplainable A.I)技术之一的LRP(Layer-wise Relevance Propagation)分析找到合适的截止频率的方法,用于实际数据采集。现场故障诊断需要强大的无监督学习算法,该算法可以忽略信号中存在的机械噪声,例如瞬态冲击。这是通过使用移动平均滤波器对自动编码器的输出进行后处理来解决的。为了表示故障级别,使用了数据生成技术,即混淆算法。该文提出一种利用混合算法生成的数据对自动编码器进行多次阈值的方法。该方法在考虑现场数据的情况下显示了电机故障诊断的可用性。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号