...
首页> 外文期刊>Molecular and Biochemical Parasitology >Chloroquine-resistant isoforms of the Plasmodium falciparum chloroquine resistance transporter acidify lysosomal pH in HEK293 cells more than chloroquine-sensitive isoforms.
【24h】

Chloroquine-resistant isoforms of the Plasmodium falciparum chloroquine resistance transporter acidify lysosomal pH in HEK293 cells more than chloroquine-sensitive isoforms.

机译:恶性疟原虫氯喹抗性转运蛋白的耐氯喹同工型比氯喹敏感性同工型更能酸化HEK293细胞中的溶酶体pH。

获取原文
获取原文并翻译 | 示例

摘要

The emergence of chloroquine-resistant Plasmodium falciparum malaria imperils the lives of millions of people in Africa, Southeast Asia and South America. Chloroquine resistance is associated with mutations in the P. falciparum chloroquine resistance transporter (PfCRT). We expressed chloroquine-sensitive (HB3) and resistant (Dd2) pfcrt alleles in HEK293 human embryonic kidney cells. PfCRT localized to the lysosomal limiting membrane and was not detected in the plasma membrane. We observed significant acidification of lysosomes containing PfCRT HB3 and Dd2, with Dd2 acidifying significantly more than HB3. A mutant HB3 allele expressing the K76T mutation (earlier found to be key for chloroquine resistance) acidified to the same extent as Dd2, whereas the acidification by a Dd2 allele expressing the T76K "back mutation" was significantly less than Dd2. Thus, the amino acid at position 76 is both an important determinant of chloroquine resistance in parasites and of lysosomal acidification following heterologous expression. PfCRT may be capable of modulating the pH of the parasite digestive vacuole, and thus chloroquine availability. Chloroquine accumulation and glycyl-phenylalanine-2-naphthylamide-induced release of lysosomal Ca(2+) stores were unaffected by PfCRT expression. Cytoplasmic domain mutations did not alter PfCRT sorting to the lysosomal membrane. This heterologous expression system will be useful to characterize PfCRT protein structure and function, and elucidate its molecular role in chloroquine resistance.
机译:耐氯喹的恶性疟原虫疟疾的出现危及非洲,东南亚和南美数百万人的生活。氯喹抗性与恶性疟原虫氯喹抗性转运蛋白(PfCRT)中的突变有关。我们在HEK293人胚胎肾细胞中表达了对氯喹敏感的(HB3)和耐药的(Dd2)pfcrt等位基因。 PfCRT定位于溶酶体限制膜,在质膜中未检测到。我们观察到含有PfCRT HB3和Dd2的溶酶体的显着酸化,其中Dd2的酸化明显超过HB3。表达K76T突变的突变型HB3等位基因(较早发现是氯喹抗性的关键)酸化程度与Dd2相同,而表达T76K“反向突变”的Dd2等位基因的酸化程度明显小于Dd2。因此,位置76的氨基酸既是寄生虫中氯喹抗性的重要决定因素,又是异源表达后溶酶体酸化的重要决定因素。 PfCRT可能能够调节寄生虫消化液的pH值,从而调节氯喹的利用率。氯喹积累和糖基-苯丙氨酸-2-萘酰胺诱导的溶酶体Ca(2+)存储释放不受PfCRT表达的影响。胞质结构域突变不会改变溶酶体膜的PfCRT分类。该异源表达系统将有助于表征PfCRT蛋白的结构和功能,并阐明其在氯喹抗性中的分子作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号