...
首页> 外文期刊>Modelling and simulation in materials science and engineering >Equilibrium molecular dynamics and mean first passage time analysis of the separation of exhaust gases at high temperatures by silica nanoporous membranes
【24h】

Equilibrium molecular dynamics and mean first passage time analysis of the separation of exhaust gases at high temperatures by silica nanoporous membranes

机译:二氧化硅纳米多孔膜在高温下分离废气的平衡分子动力学和平均首次通过时间分析

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

An investigation of mechanisms associated with the high selectivity of a gas mixture at high temperatures by silica nanoporous membranes has been conducted in the framework of equilibrium classical molecular dynamic simulations and formalism of fractional diffusion equation on a sample of a gas mixture of exhaust gases. The important feature is the quite realistic modeling of the silica nanoporous membranes based on the use of an analytic bond order potential and the conception of dangling bonds. The last two were successfully employed to model the realistic silica chemical vapor deposition process (Burlakov et al 2001 Phys. Rev. Lett. 86 3052). The dependence of the selective properties on temperature, density (voidage volume) and morphology has been investigated. The selectivity at a low temperature (673 K) is found to be more efficient than at a high temperature (873 K). When only Lennard-Jones interaction between a gas and a solid is included the selectivity is found to be changed at the low temperature (673 K) from 1.2 : 1 for a density of 50% to 1.03 : 1 for a density of 80%. Including an additional electrostatic interaction increases the selectivity from 1.79 : 1 for a density of 50% to 2.26 : 1 for a density of 80%. At the high temperature (873 K) when only Lennard-Jones potential is included the selectivity is found to be changed from 1.21 : 1 for a density of 50% to 1.13 : 1 for a density of 80%. With an additional electrostatic force the selectivity is found to be the same for all densities at around 1.43 : 1. The conclusion is that the most efficient conditions for the selective membrane are a temperature of 673K and a high density. Under these conditions the mean first passage times for species O-2 and N-2 are almost the same and much less than for species CO2. The methodology developed is general. This paper is based on the author's PhD thesis.
机译:在平衡经典分子动力学模拟和分数混合方程形式对废气混合气体样品进行分析的框架下,对二氧化硅纳米多孔膜在高温下对混合气体具有高选择性的机理进行了研究。重要的特征是基于分析键序势的使用和悬空键的概念,对二氧化硅纳米多孔膜进行了非常逼真的建模。最后两个成功地用于模拟现实的二氧化硅化学气相沉积过程(Burlakov等人,2001,Phys。Rev. Lett。86 3052)。研究了选择性对温度,密度(空隙体积)和形态的依赖性。发现在低温(673 K)下的选择性比在高温(873 K)下的选择性更有效。当仅包括气体与固体之间的Lennard-Jones相互作用时,发现在低温(673 K)下,选择性从浓度为50%的1.2:1变为浓度为80%的1.03:1。包括其他静电相互作用,可使选择性从1.79:1(密度为50%)增加到2.26:1(密度为80%)。在仅包括Lennard-Jones电势的高温(873 K)下,发现选择性从浓度为50%的1.21:1变为浓度为80%的1.13:1。通过附加的静电力,发现所有密度的选择性都在1.43:1左右。结论是,选择性膜最有效的条件是673K温度和高密度。在这些条件下,O-2和N-2物种的平均首次通过时间几乎相同,远小于CO2物种。开发的方法是通用的。本文基于作者的博士学位论文。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号