首页> 外文期刊>Modelling and simulation in materials science and engineering >Atomistic simulation and continuum modeling of graphene nanoribbons under uniaxial tension
【24h】

Atomistic simulation and continuum modeling of graphene nanoribbons under uniaxial tension

机译:单轴拉伸下石墨烯纳米带的原子模拟和连续模型

获取原文
获取原文并翻译 | 示例
       

摘要

Atomistic simulations are performed to study the nonlinear mechanical behavior of graphene nanoribbons under quasistatic uniaxial tension, emphasizing the effects of edge structures (armchair and zigzag, without and with hydrogen passivation) on elastic modulus and fracture strength. The numerical results are analyzed within a theoretical model of thermodynamics, which enables determination of the bulk strain energy density, the edge energy density and the hydrogen adsorption energy density as nonlinear functions of the applied strain based on static molecular mechanics simulations. These functions can be used to describe mechanical behavior of graphene nanoribbons from the initial linear elasticity to fracture. It is found that the initial Young's modulus of a graphene nanoribbon depends on the ribbon width and the edge chirality. Furthermore, it is found that the nominal strain to fracture is considerably lower for graphene nanoribbons with armchair edges than for ribbons with zigzag edges. Molecular dynamics simulations reveal two distinct fracture nucleation mechanisms: homogeneous nucleation for the zigzag-edged graphene nanoribbons and edge-controlled heterogeneous nucleation for the armchair-edged ribbons. The modeling and simulations in this study highlight the atomistic mechanisms for the nonlinear mechanical behavior of graphene nanoribbons with the edge effects, which is potentially important for developing integrated graphene-based devices.
机译:进行了原子模拟,研究了准静态单轴张力下石墨烯纳米带的非线性力学行为,强调了边缘结构(扶手椅和之字形,无和具有氢钝化)对弹性模量和断裂强度的影响。在热力学的理论模型中对数值结果进行了分析,从而可以基于静态分子力学模拟确定作为应用函数的非线性函数的整体应变能密度,边缘能密度和氢吸附能密度。这些功能可用于描述石墨烯纳米带从初始线性弹性到断裂的力学行为。发现石墨烯纳米带的初始杨氏模量取决于带宽度和边缘手性。此外,发现具有扶手椅边缘的石墨烯纳米带的标称断裂应变明显低于具有锯齿形边缘的石墨烯纳米带。分子动力学模拟揭示了两种截然不同的断裂成核机制:锯齿形边缘的石墨烯纳米带的均相成核和扶手椅状边缘的边缘控制的异质成核。本研究中的建模和仿真突出了具有边缘效应的石墨烯纳米带的非线性力学行为的原子机理,这对于开发集成的基于石墨烯的器件可能具有重要意义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号