首页> 外文期刊>Modelling and simulation in materials science and engineering >Modelling micro-level volume expansion during reactive melt infiltration using non-isothermal unreacted-shrinking core models
【24h】

Modelling micro-level volume expansion during reactive melt infiltration using non-isothermal unreacted-shrinking core models

机译:使用非等温未反应收缩纤芯模型对反应性熔体渗透过程中的微型体积膨胀进行建模

获取原文
获取原文并翻译 | 示例
           

摘要

Reactive melt infiltration is a process used to manufacture silicon carbide fibre reinforced silicon carbide (SiC/SiC) composites. The present stage of research on reactive infiltration is primarily experimental, wherein complete infiltration is rarely achieved and unreacted silicon still remains in the composite. This paper deals with the micro-modelling aspect of reactive melt infiltration and estimates volume expansion due to mass transfer and reaction for cylindrical fibres. The thickness of the reaction product layer forming the matrix in the composite is determined by using an unreacted-shrinking cow (URSC) model for cylindrical geometry in terms of physical parameters (diffusivity of the reactants and temperature) and non-dimensional physical quantities (such as the Sherwood number, Nusselt number and Thiele modulus). The effectiveness factors for the chemical reaction are determined as a function of time for various sets of physical parameters. The amount of volume expansion is found by determining the growth of the radius of the reaction product layer. It is concluded that lower initial temperatures of the solid reactant and higher ratios of heat capacity of reaction product to heat of reaction are favourable for infiltration. Determining the volume expansion in a single particle will later help in determining the transient permeability in a fibre preform during infiltration and also in optimizing this process. [References: 32]
机译:反应性熔体渗透是用于制造碳化硅纤维增强碳化硅(SiC / SiC)复合材料的过程。目前,对反应性渗透的研究主要是实验性的,其中很少实现完全渗透,并且未反应的硅仍然保留在复合物中。本文讨论了反应性熔体渗透的微观模型,并估计了由于传质和圆柱纤维反应引起的体积膨胀。根据物理参数(反应物的扩散性和温度)和无量纲物理量(例如, (舍伍德数,努塞尔数和Thiele模数)。对于各种物理参数集,确定化学反应的效率因子是时间的函数。通过确定反应产物层的半径的增长来发现体积膨胀的量。结论是较低的固体反应物初始温度和较高的反应产物热容量与反应热之比有利于渗透。确定单个颗粒的体积膨胀随后将有助于确定渗透过程中纤维预成型坯的瞬态渗透率,也有助于优化此过程。 [参考:32]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号