...
首页> 外文期刊>Multidiscipline modeling in materials and structures >Multi-physics modeling and simulations of reactive melt infiltration process used in fabrication of ceramic-matrix composites (CMCs)
【24h】

Multi-physics modeling and simulations of reactive melt infiltration process used in fabrication of ceramic-matrix composites (CMCs)

机译:陶瓷基复合材料(CMC)制造中使用的反应性熔体渗透过程的多物理场建模和模拟

获取原文
获取原文并翻译 | 示例
           

摘要

Purpose - A multi-physics process model is developed to analyze reactive melt infiltration (RMI) fabrication of ceramic-matrix composite (CMC) materials and components. The paper aims to discuss this issue. Design/methodology/approach - Within this model, the following key physical phenomena governing this process are accounted for: capillary and gravity-driven unsaturated flow of the molten silicon into the SiC/SiC CMC preform; chemical reactions between the silicon melt and carbon (either the one produced by the polymer-binder pyrolysis or the one residing within the dried matrix slurry); thermal-energy transfer and source/sink phenomena accompanying reactive-flow infiltration; volumetric changes accompanying chemical reactions of the molten silicon with the SiC preform and cooling of the as-fabricated CMC component to room temperature; development of residual stresses within, and thermal distortions of, the as-fabricated CMC component; and grain-microstructure development within the SiC matrix during RML Findings - The model is validated, at the material level, by comparing its predictions with the experimental and modeling results available in the open literature. The model is subsequently applied to simulate RMI fabrication of a prototypical gas-turbine engine hot-section component, i.e. a shroud. The latter portion of the work revealed the utility of the present computational approach to model fabrication of complex-geometry CMC components via the RMI process. Originality/value - To the authors' knowledge, the present work constitutes the first reported attempt to apply a multi-physics RMI process model to a gas-turbine CMC component.
机译:目的-建立一个多物理场过程模型来分析陶瓷基复合材料(CMC)材料和组件的反应熔体渗透(RMI)制造。本文旨在讨论这个问题。设计/方法/方法-在该模型中,解释了控制该过程的以下关键物理现象:毛细管和重力驱动的熔融硅进入SiC / SiC CMC预成型坯的不饱和流;硅熔体和碳之间的化学反应(一种是由聚合物粘合剂热解产生的,一种是存在于干燥的基体浆料中的化学反应);伴随反应流渗透的热能传递和源/汇现象;伴随着熔融硅与SiC预制棒的化学反应以及将制成的CMC组件冷却至室温而引起的体积变化;加工后的CMC组件内部残余应力的产生以及热变形; RML发现期间SiC基体内的晶粒和晶粒微结构发展-通过比较模型的预测结果与公开文献中提供的实验和建模结果,可以在材料层面验证该模型。随后将该模型应用于模拟典型的燃气轮机发动机热段部件(即罩)的RMI制造。这项工作的后半部分揭示了本计算方法通过RMI工艺对复杂几何体CMC组件的模型制造的实用性。原创性/价值-据作者所知,本工作构成了首次报道的将多物理场RMI过程模型应用于燃气轮机CMC组件的尝试。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号