首页> 外文期刊>Modelling and simulation in materials science and engineering >FEM calculation of residual stresses induced by laser shock processing in stainless steels
【24h】

FEM calculation of residual stresses induced by laser shock processing in stainless steels

机译:不锈钢中激光冲击加工引起的残余应力的有限元计算

获取原文
获取原文并翻译 | 示例
       

摘要

Laser shock processing, also known as laser shock peening, generates through a laser-induced plasma, plastic deformation and compressive residual stresses in materials for improved fatigue or stress corrosion cracking resistances. The calculation of mechanical effects is rather complex, due to the severity of the pressure loading imparted in a very short time period (in the ns regime). This produces very high strain rates (10(6) s(-1)), which necessitate a precise determination of dynamic properties. Finite element techniques have been applied to predict the residual stress fields induced in two different stainless steels, combining shock wave hydrodynamics and strain rate dependent mechanical behaviour. The predicted residual stress fields for single or multiple laser processes were correlated with those from experimental data, with a specific focus on the influence of process parameters such as pressure pulse amplitude and duration, laser spot size or sacrificial overlay. Among other results, simulations confirmed that the affected depths increased with pulse duration, peak pressure and cyclic deformations, thus reaching much deeper layers (>0.5 mm) than with any other conventional surface processing. To improve simulations, the use of experimental VISAR determinations to determine pressure loadings and elastic limits under shock conditions (revealing different strain-rate dependences for the two stainless steels considered) was shown to be a key point. Finally, the influence of protective coatings and, more precisely, the simulation of a thermo-mechanical uncoated laser shock processing were addressed and successfully compared with experiments, exhibiting tensile surface stress peak affecting a few tenths of micrometres and a compressive sub-surface stress field.
机译:激光冲击处理,也称为激光冲击喷丸处理,是通过激光诱导的等离子体,材料中的塑性变形和压缩残余应力产生的,从而提高了抗疲劳性或抗应力腐蚀开裂性。由于在非常短的时间内(在ns模式下)施加的压力负荷的严重性,机械效应的计算相当复杂。这会产生很高的应变率(10(6)s(-1)),因此需要精确确定动态特性。有限元技术已被应用来预测两种不同不锈钢中产生的残余应力场,并结合了冲击波流体动力学和应变率相关的机械性能。将单个或多个激光过程的预测残余应力场与实验数据中的残余应力场相关联,并特别关注过程参数(如压力脉冲幅度和持续时间,激光光斑大小或牺牲覆盖层)的影响。除其他结果外,模拟结果还证实,受影响的深度随脉冲持续时间,峰值压力和循环变形而增加,从而比任何其他常规表面处理工艺所能达到的深度要深得多(> 0.5 mm)。为了改善模拟效果,关键是要使用VISAR实验测定来确定冲击条件下的压力载荷和弹性极限(揭示了所考虑的两种不锈钢的不同应变率依赖性)。最后,解决了保护涂层的影响,更准确地说,对热机械未涂层激光冲击处理的仿真进行了讨论,并成功地与实验进行了比较,结果显示拉伸表面应力峰影响了十分之一微米,并且压缩了次表面应力场。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号