首页> 外文期刊>Suan Sunandha Rajabhat University Journal of Science and Technology >Numerical Approximations of Fredholm-Volterra Integral Equation of 2nd kind using Galerkin and Collocation Methods
【24h】

Numerical Approximations of Fredholm-Volterra Integral Equation of 2nd kind using Galerkin and Collocation Methods

机译:使用Galerkin和搭配方法的第二类Fredholm-Volterra积分方程的数值近似

获取原文
获取原文并翻译 | 示例

摘要

Galerkin and collocation approximation techniques are very effective and popular among researchers for numerical approximations of different types of differential, integral and integro-differential equations. Both methods approximate the solution by a finite sum of some known polynomials. In recent years, researchers around the world have been used different combinations of polynomials and collocation points in Galerkin and collocation methods for numerical approximations of different types of integral equations. Also, collocation method have been used more frequently compared to the Galerkin method. In this research, five different polynomials in Galerkin method and five different combinations of polynomials and collocation points in collocation method have been used for numerical approximations of linear FVIE of 2nd kind.It is found that the performances of different polynomials and collocation points in both these methods are consistent.
机译:Galerkin和搭配逼近技术非常有效,在研究人员中很受欢迎,可用于不同类型的微分、积分和积分微分方程的数值逼近。这两种方法都通过一些已知多项式的有限和来近似解。近年来,世界各地的研究人员一直在伽辽金中使用多项式和搭配点的不同组合,以及用于不同类型积分方程的数值近似的搭配方法。此外,与Galerkin方法相比,搭配方法的使用频率更高。本研究利用Galerkin方法中的5个不同多项式和搭配法中的5个不同多项式和搭配点组合,对第2类线性FVIE进行了数值逼近。结果表明,两种方法中不同多项式和搭配点的性能是一致的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号