首页> 外文期刊>Metallomics. integrated biometal science >A novel arsenic methyltransferase gene of Westerdykella aurantiaca isolated from arsenic contaminated soil: phylogenetic, physiological, and biochemical studies and its role in arsenic bioremediation
【24h】

A novel arsenic methyltransferase gene of Westerdykella aurantiaca isolated from arsenic contaminated soil: phylogenetic, physiological, and biochemical studies and its role in arsenic bioremediation

机译:从砷污染土壤中分离出的新型Westerdykella aurantiaca砷甲基转移酶基因:系统发育,生理和生化研究及其在砷生物修复中的作用

获取原文
获取原文并翻译 | 示例
           

摘要

Elevated arsenic concentration in the environment and agricultural soil is a serious concern to crop production and human health. Among different detoxification mechanisms, the methylation of arsenic is a widespread phenomenon in nature. A number of microorganisms are able to methylate arsenic, but less is known about the arsenic metabolism in fungi. We identified a novel arsenic methyltransferase (WaarsM) gene from a soil fungus, Westerdykella aurantiaca. WaarsM showed sequence homology with all known arsenic methyltransferases having three conserved SAM binding motifs. The expression of WaarsM enhanced arsenic resistance in E. coli (Dars) and S. cerevisiae (Dacr2) strains by biomethylation and required endogenous reductants, preferably GSH, for methyltransferase activity. The purified WaarsM catalyzes the production of methylated arsenicals from both AsIII and AsV, and also displays AsV reductase activity. It displayed higher methyltransferase activity and lower K-M 0.1945 + 0.021 mM and K-M 0.4034 +/- 0.078 mM for AsIII and AsV, respectively. S. cerevisiae (Delta acr2) cells expressing WaarsM produced 2.2 ppm volatile arsenic and 0.64 ppm DMA(V) with 0.58 ppm volatile arsenicals when exposed to 20 ppm AsV and 2 ppm AsIII, respectively. Arsenic tolerance in rice after co-culture with genetically engineered yeast suggested its potential role in arsenic bioremediation. Thus, characterization of WaarsM provides a potential strategy to reduce arsenic concentration in soil with reduced arsenic accumulation in crops grown in arsenic contaminated areas, and thereby alleviating human health risks.
机译:环境和农业土壤中砷的浓度升高是作物生产和人类健康的严重问题。在不同的排毒机制中,砷的甲基化是自然界普遍存在的现象。许多微生物能够使砷甲基化,但是对于真菌中砷的代谢知之甚少。我们从土壤真菌Westerdykella aurantiaca鉴定了一种新型的砷甲基转移酶(WaarsM)基因。 WaarsM与具有三个保守的SAM结合基序的所有已知的砷甲基转移酶显示出序列同源性。 WaarsM的表达通过生物甲基化增强了大肠杆菌(Dars)和啤酒酵母(Dacr2)菌株中的砷抗性,并且需要甲基转移酶活性需要内源性还原剂(优选GSH)。纯化的WaarsM催化由AsIII和AsV产生甲基化的砷,并显示AsV还原酶活性。对于AsIII和AsV,它分别显示出较高的甲基转移酶活性和较低的K-M 0.1945 + 0.021 mM和K-M 0.4034 +/- 0.078 mM。表达WaarsM的酿酒酵母(Delta acr2)细胞分别暴露于20 ppm AsV和2 ppm AsIII时,会产生2.2 ppm的挥发性砷和0.64 ppm的DMA(V),以及0.58 ppm的挥发性砷。与基因工程酵母共培养后,水稻对砷的耐受性表明其在砷生物修复中的潜在作用。因此,WaarsM的表征提供了一种潜在的策略,可以降低土壤中的砷浓度,并减少在砷污染地区种植的农作物中的砷积累,从而减轻人类健康风险。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号