...
首页> 外文期刊>Microsystem technologies >Microgalvanic nickel pulse plating process for the fabrication of thermal microactuators
【24h】

Microgalvanic nickel pulse plating process for the fabrication of thermal microactuators

机译:用于热微致动器的微电流镍脉冲电镀工艺

获取原文
获取原文并翻译 | 示例
           

摘要

Nickel is a common material in micro fabrication because of its fatigue resistance and its mechanical properties. It is used for instance for thermal actuators, micro-grippers, or RF-switches. The defined electro deposition of the nickel matrix is crucial for the properties and functionality of e.g., thermal actuators. Micro galvanic processes are the basis of this electro deposition, and require knowledge of the electrochemical fundamentals as well as numerical electrochemical process simulation for adjustment. Especially, realization of high aspect ratios requires the application of sophisticated plating techniques such as pulse reverse deposition. The pulse plating process is adjusted using the results of electrochemical numerical simulation routines, visualizing the (local) potential field and the current field line distribution as a function of the applied electrochemical parameters. Compact, completely void free structures can be obtained by applying the developed pulse plating process to Si wafers that are structured with photo resist. Nickel is chosen for electro deposition due to its chemical stability and its hardness. MEMS structures are designed to convert the thermal expansion of the material into an in-plane deflection. A custom made measurement setup, consisting of a sealable chamber, a Peltier element with a temperature control unit, and an optical microscope is used to measure these deflections at different temperatures. A set of cantilever structures with different lengths is used to evaluate the Young's modulus and the vertical stress gradient of the plated materials. Additional, finite element simulations are carried out to determine the thermal expansion coefficient of the plated Nickel, by fitting the simulation and the measurement results.
机译:镍由于其耐疲劳性和机械性能而成为微型制造中的常用材料。例如,它用于热执行器,微型夹具或RF开关。镍基体的确定的电沉积对于例如热致动器的特性和功能至关重要。微电流过程是这种电沉积的基础,并且需要了解电化学基础知识以及数值电化学过程模拟以进行调整。尤其是,要实现高长宽比,需要应用复杂的电镀技术,例如脉冲反向沉积。使用电化学数值模拟程序的结果调整脉冲镀覆过程,将(局部)势场和电流场线分布可视化为所施加的电化学参数的函数。通过将开发的脉冲电镀工艺应用于采用光致抗蚀剂构造的Si晶圆,可以获得紧凑,完全无空隙的结构。由于镍的化学稳定性和硬度,因此选择镍进行电沉积。 MEMS结构旨在将材料的热膨胀转换为面内偏转。定制测量设置由一个可密封的腔室,一个带温度控制单元的珀耳帖元件和一个光学显微镜组成,用于测量不同温度下的这些挠度。使用一组不同长度的悬臂结构来评估镀覆材料的杨氏模量和垂直应力梯度。通过拟合模拟和测量结果,进行了附加的有限元模拟,以确定镀镍的热膨胀系数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号