...
首页> 外文期刊>Meteoritics & planetary science >Galactic chemical evolution and the oxygen isotopic composition of the solar system
【24h】

Galactic chemical evolution and the oxygen isotopic composition of the solar system

机译:银河系化学演化和太阳系中的氧同位素组成

获取原文
获取原文并翻译 | 示例
           

摘要

We review current observational and theoretical constraints on the galactic chemical evolution (GCE) of oxygen isotopes to explore whether GCE plays a role in explaining the lower ~(17)O/~(18)O ratio of the Sun, relative to the present-day interstellar medium, or the existence of distinct ~(16)O-rich and ~(16)O-poor reservoirs in the solar system. Although the production of both ~(17)O and ~(18)O are related to the metallicity of progenitor stars, ~(17)O is most likely produced in stars that evolve on longer timescales than those that produce ~(18)O. Therefore, the ~(17)O/~(18)O ratio need not have remained constant over time, contrary to preconceptions and the simplest models of GCE. An apparent linear, slope-one correlation between δ~(17)O and δ~(18)O in the ISM need not necessarily reflect an O isotopic gradient, and any slope-one galactocentric gradient need not correspond to evolution in time. Instead, increasing ~(17)O/~(18)O is consistent both with observational data from molecular clouds and with modeling of the compositions of presolar grains. Models in which the rate of star formation has decelerated over the past few Gyr or in which an enhanced period of star formation occurred shortly before solar birth ("starburst") can explain the solar-ISM O-isotopic difference without requiring a local input of supernova ejecta into the protosolar cloud. "Cosmic chemical memory" models in which interstellar dust is on average older than interstellar gas predict that primordial solar system solids should be ~(16)O-rich, relative to the Sun, in conflict with observations. However, scenarios can be constructed in which the ~(16)O-rich contribution of very massive stars could lead to ~(16)O-poor solids and a ~(16)O-rich bulk Sun, if the solar system formed shortly after a starburst, independent of the popular scenario of photochemical self-shielding of CO.
机译:我们回顾了当前氧同位素银化学演化(GCE)的观测和理论约束条件,以探索GCE是否在解释太阳相对于当前的〜(17)O /〜(18)O较低的比率方面起了作用日星际介质,或太阳系中存在独特的〜(16)O丰富和〜(16)O贫乏的储层。尽管〜(17)O和〜(18)O的产生都与祖先恒星的金属性有关,但〜(17)O最有可能产生于比产生〜(18)O的恒星演化时间更长的恒星中。因此,与先入之见和最简单的GCE模型相反,〜(17)O /〜(18)O之比不必随时间保持恒定。 ISM中δ〜(17)O和δ〜(18)O之间明显的线性斜率一相关性不一定反映O同位素梯度,任何斜率一半质心梯度都不必与时间演化相对应。相反,增加〜(17)O /〜(18)O既与来自分子云的观测数据相一致,也与前太阳晶粒的成分建模相一致。在过去的数个Gyr内恒星形成速率已经降低或在太阳诞生前不久(“ starburst”)发生的恒星形成周期增加的模型可以解释太阳ISM O同位素差异,而无需本地输入超新星喷射进入原云。 “宇宙化学记忆”模型中,星际尘埃的平均年龄比星际气体的年龄大,这预示着原始太阳系固体应相对于太阳富含〜(16)O,这与观测结果相矛盾。但是,如果太阳系很快形成,那么可以构造这样的场景:超大质量恒星的〜(16)O富集会导致〜(16)O贫乏的固体和〜(16)O富集的整体太阳。爆炸后,与流行的CO光化学自屏蔽技术无关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号